Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glutamate release promotes growth of malignant gliomas

Abstract

Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative diseases. Although recent data show that cultured glioma cells secrete glutamate, the growth potential of brain tumors has not yet been linked to an excitotoxic mechanism. Using bioluminescence detection of glutamate release from freshly prepared brain slices, we show that implanted glioma cells continue to secrete glutamate. Moreover, gliomas with high glutamate release have a distinct growth advantage in host brain that is not present in vitro. Treatment with the NMDA receptor antagonists MK801 or memantine slowed the growth of glutamate-secreting tumors in situ, suggesting that activation of NMDA receptors facilitates tumor expansion. These findings support a new approach for therapy of brain tumors, based upon antagonizing glutamate secretion or its target receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glutamate-secreting glioma cells kill cocultured neurons.
Figure 2: Expression and properties of glutamate transporter in C6 subclones.
Figure 3: Rapid growth of glutamate-secreting gliomas.
Figure 4: MK801 reduces expansion of glutamate-secreting gliomas.
Figure 5: Neuronal death and inflammatory response surrounding glutamate-secreting tumors.
Figure 6: Memantine reduces the expansion of glutamate-secreting gliomas.

Similar content being viewed by others

References

  1. Benedetti, S. et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nature Med. 6, 447–450 (2000).

    Article  Google Scholar 

  2. Russell, D. & Rubinstein, L. Pathology of Tumors of the Nervous System (ed. Arnold, E.) (London, Melbourne, Aukland, 1989).

    Google Scholar 

  3. Schiffer, D. Brain Tumors. Biology, Pathology, and Clinical References (Springer, New York, Berlin, Heidelberg, 1997).

    Google Scholar 

  4. Cascino, G. Epilepsy and brain tumors: Implications for treatment. Epilepsia 31, S37–44 (1990).

    Article  Google Scholar 

  5. Paillas, J.E. A review of 2,413 tumours operated over a 30-year period. J. Neuroradiol. 18, 79–106 (1991).

    PubMed  Google Scholar 

  6. Ye, Z.C. & Sontheimer, H. Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59, 4383–4391 (1999).

    PubMed  Google Scholar 

  7. Ye, Z.C., Rothstein, J.D. & Sontheimer, H. Compromised glutamate transport in human glioma cells: Reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J. Neurosci. 19, 10767–10777 (1999).

    Article  Google Scholar 

  8. Behrens, P.F., Langemann, H., Strohschein, R., Draeger, J. & Hennig, J. Extracellular glutamate and other metabolites in and around RG2 rat glioma: An intracerebral microdialysis study. J. Neurooncol. 47, 11–22 (2000).

    Article  Google Scholar 

  9. Scali, C., Prosperi, C., Vannucchi, M.G., Pepeu, G. & Casamenti, F. Brain inflammatory reaction in an animal model of neuronal degeneration and its modulation by an anti-inflammatory drug: Implication in Alzheimer's disease. Eur. J. Neurosci. 12, 1900–1912 (2000).

    Article  Google Scholar 

  10. Bolton, S.J. & Perry, V.H. Differential blood-brain barrier breakdown and leucocyte recruitment following excitotoxic lesions in juvenile and adult rats. Exp. Neurol. 154, 231–240 (1998).

    Article  Google Scholar 

  11. Abramovitch, R., Marikovsky, M., Meir, G. & Neeman, M. Stimulation of tumour angiogenesis by proximal wounds: spatial and temporal analysis by MRI. Br. J. Cancer 77, 440–447 (1998).

    Article  Google Scholar 

  12. Palos, T.P., Ramachandran, B., Boado, R. & Howard, B.D. Rat C6 and human astrocytic tumor cells express a neuronal type of glutamate transporter. Brain Res. Mol. Brain Res. 37, 297–303 (1996).

    Article  Google Scholar 

  13. Davis, K.E. et al. Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J. Neurosci. 18, 2475–2485 (1998).

    Article  Google Scholar 

  14. Cotrina, M.L. et al. Astrocytic gap junctions remain open during ischemic conditions. J. Neurosci. 18, 2520–2537 (1998).

    Article  Google Scholar 

  15. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771 (1994).

    Article  Google Scholar 

  16. Rothstein, J.D. et al. Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725 (1994).

    Article  Google Scholar 

  17. Jabaudon, D. et al. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc. Natl. Acad. Sci. USA 96, 8733–8738 (1999).

    Article  Google Scholar 

  18. Warr, O., Takahashi, M. & Attwell, D. Modulation of extracellular glutamate concentration in rat brain slices by cystine-glutamate exchange. J. Physiol. 514, 783–793 (1999).

    Article  Google Scholar 

  19. Zhang, W. et al. Direct gap junction communication between malignant glioma cells and astrocytes. Cancer Res. 59, 1994–2003 (1999).

    PubMed  Google Scholar 

  20. Fosse, V.M., Kolstad, J. & Fonnum, F. A bioluminescence method for the measurement of L-glutamate: Applications to the study of changes in the release of L-glutamate from lateral geniculate nucleus and superior colliculus after visual cortex ablation in rats. J. Neurochem. 47, 340–349 (1986).

    Article  Google Scholar 

  21. Innocenti, B., Parpura, V. & Haydon, P.G. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J. Neurosci. 20, 1800–1808 (2000).

    Article  Google Scholar 

  22. Lin, J.H. et al. Gap-junction-mediated propagation and amplification of cell injury. Nature Neurosci. 1, 494–500 (1998).

    Article  Google Scholar 

  23. Barth, R.F. Rat brain tumor models in experimental neuro-oncology: The 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J. Neurooncol. 36, 91–102 (1998).

    Article  Google Scholar 

  24. Jain, K.K. Evaluation of memantine for neuroprotection in dementia. Expert Opin. Investig. Drugs 9, 1397–1406 (2000).

    Article  Google Scholar 

  25. Parsons, C.G., Danysz, W. & Quack, G. Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38, 735–767 (1999).

    Article  Google Scholar 

  26. Danysz, W., Parsons, C.G., Kornhuber, J., Schmidt, W.J. & Quack, G. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents—preclinical studies. Neurosci. Biobehav. Rev. 21, 455–468 (1997).

    Article  Google Scholar 

  27. Fisher, B., Fisher, E.R. & Feduska, N. Trauma and the localization of tumor cells. Cancer 20, 23–30 (1967).

    Article  Google Scholar 

  28. Graf, M.R., Jadus, M.R., Hiserodt, J.C., Wepsic, H.T. & Granger, G.A. Development of systemic immunity to glioblastoma multiforme using tumor cells genetically engineered to express the membrane-associated isoform of macrophage colony-stimulating factor. J. Immunol. 163, 5544–5551 (1999).

    PubMed  Google Scholar 

  29. Piani, D., Frei, K., Do, K.Q., Cuenod, M. & Fontana, A. Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci. Lett. 133, 159–162 (1991).

    Article  Google Scholar 

  30. Rothstein, J.D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  Google Scholar 

  31. Anderson, C.M. & Swanson, R.A. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia 32, 1–14 (2000).

    Article  Google Scholar 

  32. Swanson, R.A. et al. Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17, 932–940 (1997).

    Article  Google Scholar 

  33. Moots, P.L. et al. The course of seizure disorders in patients with malignant gliomas. Arch. Neurol. 52, 717–724 (1995).

    Article  Google Scholar 

  34. Pace, A. et al. Epilepsy and gliomas: incidence and treatment in 119 patients. J. Exp. Clin. Cancer Res. 17, 479–482 (1998).

    PubMed  Google Scholar 

  35. McDonald, J.W., Althomsons, S.P., Hyrc, K.L., Choi, D.W. & Goldberg, M.P. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nature Med. 4, 291–297 (1998).

    Article  Google Scholar 

  36. Meldrum, B.S. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S–1015S (2000).

    Article  Google Scholar 

  37. Smith, T., Groom, A., Zhu, B. & Turski, L. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nature Med. 6, 62–66 (2000).

    Article  Google Scholar 

  38. Lee, J.M., Zipfel, G.J. & Choi, D.W. The changing landscape of ischaemic brain injury mechanisms. Nature 399, A7–14 (1999).

    Article  Google Scholar 

  39. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    Article  Google Scholar 

  40. Harkany, T. et al. β-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci. 12, 2735–2745 (2000).

    Article  Google Scholar 

  41. Kanda, T. et al. Topiramate reduces abnormally high extracellular levels of glutamate and aspartate in the hippocampus of spontaneously epileptic rats (SER). Life Sci. 59, 1607–1616 (1996).

    Article  Google Scholar 

  42. Palmer, G.C. et al. The low-affinity, use-dependent NMDA receptor antagonist AR-R 15896AR. An update of progress in stroke. Ann. NY Acad. Sci. 890, 406–420 (1999).

    Article  Google Scholar 

  43. Zhang, W. et al. Tamoxifen-induced enhancement of calcium signaling in glioma and MCF-7 breast cancer cells. Cancer Res. 60, 5395–5400 (2000).

    PubMed  Google Scholar 

  44. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci. 1, 683–692 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Goldman for critical review of this manuscript. This study was supported by NIH/NINDS grants NS30007 and NS38073 (to M.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiken Nedergaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takano, T., Lin, JC., Arcuino, G. et al. Glutamate release promotes growth of malignant gliomas. Nat Med 7, 1010–1015 (2001). https://doi.org/10.1038/nm0901-1010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0901-1010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing