Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Targeting the endocannabinoid system in cancer therapy: A call for further research

New uses warranted for cannabinoids? Recent data indicate that synthetic or endogenous substances activating the receptor for marijuana's psychotropic component might be used as templates for the development of new anti-cancer drugs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular pathways underlying the anti-tumor effects of cannabinoids.

References

  1. Adams, R. Marihuana. Harvey Lectures Ser. 37, 168–197 (1942).

    Google Scholar 

  2. Gaoni, Y. & Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Amer. Chem. Soc. 86, 1646 (1964).

  3. Pertwee, R.G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther. 74, 129–180 (1997).

    CAS  PubMed  Google Scholar 

  4. Di Marzo, V. 'Endocannabinoids' and other fatty acid derivatives with cannabimimetic properties: Biochemistry and possible physiopathological relevance. Biochim. Biophys. Acta. 1392, 153–175 (1998).

    Article  CAS  Google Scholar 

  5. Paria, B.C., Das, S.K. & Dey, S.K. The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling. Proc. Natl. Acad. Sci. USA 92, 9460–9464 (1995).

    Article  CAS  Google Scholar 

  6. Berrendero, F., Sepe, N., Ramos, J.A., Di Marzo, V. & Fernandez-Ruiz, J.J. Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period. Synapse 33, 181–191 (1999).

    Article  CAS  Google Scholar 

  7. Guzman, M., Sanchez, C. & Galve-Roperh, I. Control of the cell survival/death decision by cannabinoids. J. Mol. Med. 78, 613–625 (2001).

    Article  CAS  Google Scholar 

  8. Munson, A.E., Harris, L.S., Friedman, M.A., Dewey, W.L. & Carchman, R.A. Antineoplastic activity of cannabinoids. J. Natl. Cancer Inst. 55, 597–602 (1975).

    Article  CAS  Google Scholar 

  9. Tramer, M.R. et al. Cannabinoids for control of chemotherapy induced nausea and vomiting: Quantitative systematic review. Brit. Med. J. 323, 16–21 (2001).

    Article  CAS  Google Scholar 

  10. Kinzbrunner, B.M. Review: Cannabinoids control chemotherapy-induced nausea and vomiting but increase the risk for side effects. ACP J. Club 136, 19 (2002).

  11. Zhu, L.X. et al. Δ-9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. J. Immunol. 165, 373–380 (2000).

    Article  CAS  Google Scholar 

  12. Toxicology and carcinogenesis studies of 1-trans-Δ-9-tetrahydrocannabinol in F344N/N rats and BC63F1 mice. National Institutes of Health National Toxicology Program, NIH Publication No. 97-3362 (November 1996).

  13. Watson, E.S. The effect of marijuana smoke exposure on murine sarcoma 180 survival in Fisher rats. Immunopharmacol. Immunotoxicol. 11, 211–222 (1989).

    Article  CAS  Google Scholar 

  14. Barsky, S.H., Roth, M.D., Kleerup, E.C., Simmons, M. & Tashkin, D.P. Histopathologic and molecular alterations in bronchial epithelium in habitual smokers of marijuana, cocaine, and/or tobacco. J. Natl. Cancer Inst. 90, 1198–1205 (1998).

    Article  CAS  Google Scholar 

  15. De Petrocellis, L. et al. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc. Natl. Acad. Sci. USA 95, 8375–8380 (1998).

    Article  CAS  Google Scholar 

  16. Melck, D. et al. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology 141, 118–126 (2000).

    Article  CAS  Google Scholar 

  17. Sanchez, C., Galve-Roperh, I., Canova, C., Brachet, P. & Guzman, M. Δ9-tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett. 436, 6–10 (1998).

    Article  CAS  Google Scholar 

  18. Ruiz, L., Miguel, A. & Diaz-Laviada, I. Δ9-tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism. FEBS Lett. 458, 400–404 (1999).

    Article  CAS  Google Scholar 

  19. Maccarrone, M., Lorenzon, T., Bari, M., Melino, G. & Finazzi-Agrò, A. Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J. Biol. Chem. 275, 31938–31945 (2000).

    Article  CAS  Google Scholar 

  20. Jacobsson, S.O.P., Wallin, T. & Fowler, C.J. Inhibition of rat C6 glioma cell proliferation by endogenous and synthetic cannabinoids. Relative involvement of cannabinoid and vanilloid receptors. J. Pharmacol. Exp. Ther. 299, 951–959 (2001).

    CAS  PubMed  Google Scholar 

  21. Galve-Roperh, I. et al. Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Med. 6, 313–319 (2000).

    Article  CAS  Google Scholar 

  22. Sanchez, C. et al. Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer. Res. 61, 5784–5789 (2001).

    CAS  PubMed  Google Scholar 

  23. Bifulco, M. et al. Control by the endogenous cannabinoid system of ras oncogene-dependent tumor growth. FASEB J. 15, 2745–2747 (2001).

    Article  CAS  Google Scholar 

  24. Pagotto, U. et al. Normal human pituitary gland and pituitary adenomas express cannabinoid receptor type 1 and synthesize endogenous cannabinoids: First evidence for a direct role of cannabinoids on hormone modulation at the human pituitary level. J. Clin. Endocrinol. Metab. 86, 2687–2696 (2001).

    CAS  PubMed  Google Scholar 

  25. Maccarrone, M., Attina, M., Cartoni, A., Bari, M. & Finazzi-Agro, A. Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture. J. Neurochem. 76, 594–601 (2001).

    Article  CAS  Google Scholar 

  26. Melck, D. et al. Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells. FEBS Lett. 463, 235–240 (1999).

    Article  CAS  Google Scholar 

  27. Hollister, L.E. Health aspects of cannabis: Revisited. Int. J. Neuropsychopharmacol. 1, 71–80 (1998).

    Article  CAS  Google Scholar 

  28. Bisogno, T. et al. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells—implications for cell proliferation and differentiation. Eur. J. Biochem. 254, 634–642 (1998).

    Article  CAS  Google Scholar 

  29. Di Marzo, V. et al. Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells. Biochem. J. 358, 249–255 (2001).

    Article  CAS  Google Scholar 

  30. Melck, D. et al. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): Vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Biochem. Biophys. Res. Commun. 262, 275–284 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bifulco, M., Di Marzo, V. Targeting the endocannabinoid system in cancer therapy: A call for further research. Nat Med 8, 547–550 (2002). https://doi.org/10.1038/nm0602-547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0602-547

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing