Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B-cell targeted therapies in rheumatoid arthritis and systemic lupus erythematosus

Abstract

B cells appear to have a central role in the immunopathogenesis of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE); both autoantibody production and B-cell anomalies are characteristic of these diseases. With the recent availability of biologic agents that can deplete B cells or block their function in vivo, it has become possible to target B cells therapeutically. Evidence strongly suggests that novel B-cell targeting agents are effective. In addition, the mechanistic specificity of B-cell targeted approaches, combined with the ability to test them in large randomized controlled trials, will provide an unprecedented opportunity to study the precise roles of B cells in the immunopathogenesis of RA and SLE. The largest volume of information is available for rituximab, a chimeric monoclonal antibody that depletes B cells by binding to the CD20 cell-surface antigen. Information from multiple investigator-sponsored trials and from off-label use suggests efficacy of this antibody in RA, SLE, and other autoimmune syndromes. Randomized controlled trials have also provided solid evidence for the efficacy of rituximab in RA and are ongoing in SLE. Other therapeutic agents supported by controlled data include cytotoxic T-lymphocyte-associated protein 4 immunoglobulin and antibodies against the interleukin-6 receptor and the B-cell survival molecule BLyS. Additional agents and targets are in earlier stages of development. The concerns about infectious complications have so far not proven to be justified. We can reasonably expect important advances in the understanding and treatment of RA and SLE in the next 5–10 years, as B-cell targeting methods become more widespread and sophisticated.

Key Points

  • B cells are important in the pathogenesis of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), not only because they produce autoantibodies, but also because of their role in anomalous immunoregulation

  • The availability of a B-cell-depleting therapy (rituximab) has greatly facilitated B-cell targeted trials in SLE and RA; efficacy has been demonstrated in randomized controlled trials in RA, but evidence of rituximab's efficacy in SLE is, so far, anecdotal

  • Other approaches to B-cell targeting include anticytokine and anti-B cell-surface molecule techniques, as well as blockade of costimulatory signals

  • Perhaps surprisingly, recurrent infections have not been a safety issue; given the biologic effectiveness of these B-cell targeting agents, however, ongoing vigilance will be essential

  • We hope to learn more about the roles of B cells in RA and SLE by the use of these agents; it will be particularly important that mechanistic studies accompany randomized controlled trials in this area

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B-cell development.

Similar content being viewed by others

References

  1. Eisenberg R (2005) Do autoantigens define autoimmunity or vice versa? Eur J Immunol 35: 367–370

    Article  CAS  PubMed  Google Scholar 

  2. Slifka MK and Ahmed R (1996) Long-term humoral immunity against viruses: revisiting the issue of plasma cell longevity. Trends Microbiol 4: 394–400

    Article  CAS  PubMed  Google Scholar 

  3. Keystone E (2005) B cell targeted therapies. Arthritis Res Ther 7 (Suppl 3): S13–S18

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yurasov S et al. (2005) Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med 201: 703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Samuels J et al. (2005) Impaired early B cell tolerance in patients with rheumatoid arthritis. J Exp Med 201: 1659–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schroder AE et al. (1996) Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA 93: 221–225

    Article  CAS  PubMed  Google Scholar 

  7. Takemura S et al. (2001) T cell activation in rheumatoid synovium is B cell dependent. J Immunol 167: 4710–4718

    Article  CAS  PubMed  Google Scholar 

  8. Odendahl M et al. (2000) Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 165: 5970–5979

    Article  CAS  PubMed  Google Scholar 

  9. Swaak A and van den Brink HG (1996) Case report: common variable immunodeficiency in a patient with systemic lupus erythematosus. Lupus 5: 242–246

    Article  CAS  PubMed  Google Scholar 

  10. Eisenberg RA et al. (1994) The role of B cell abnormalities in the systemic autoimmune syndromes of lpr and gld mice. Semin Immunol 6: 49–54

    Article  CAS  PubMed  Google Scholar 

  11. Chan OT et al. (1999) A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 189: 1639–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lipsky PE (2001) Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol 2: 764–766

    Article  CAS  PubMed  Google Scholar 

  13. Grillo-López AJ et al. (1999) Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol 26 (Suppl 14): 66–73

    PubMed  Google Scholar 

  14. Tedder TF and Engel P (1994) CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 15: 450–454

    Article  CAS  PubMed  Google Scholar 

  15. O'Keefe TL et al. (1998) Mice carrying a CD20 gene disruption. Immunogenetics 48: 125–132

    Article  CAS  PubMed  Google Scholar 

  16. Leandro MJ et al. (2002) Clinical outcome in 22 patients with rheumatoid arthritis treated with B lymphocyte depletion. Ann Rheum Dis 61: 883–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leandro MJ et al. (2002) An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum 46: 2673–2677

    Article  PubMed  Google Scholar 

  18. Stasi R et al. (2001) Rituximab chimeric anti-CD20 monoclonal antibody treatment for adults with chronic idiopathic thrombocytopenic purpura. Blood 98: 952–957

    Article  CAS  PubMed  Google Scholar 

  19. Levine TD and Pestronk A (1999) IgM antibody-related polyneuropathies: B-cell depletion chemotherapy using rituximab. Neurology 52: 1701–1704

    Article  CAS  PubMed  Google Scholar 

  20. Specks U et al. (2001) Response of Wegener's granulomatosis to anti-CD20 chimeric monoclonal antibody therapy. Arthritis Rheum 44: 2836–2840

    Article  CAS  PubMed  Google Scholar 

  21. Zaja F et al. (2003) Efficacy and safety of rituximab in type II mixed cryoglobulinemia. Blood 101: 3827–3834

    Article  CAS  PubMed  Google Scholar 

  22. Levine TD (2005) Rituximab in the treatment of dermatomyositis: an open-label pilot study. Arthritis Rheum 52: 601–607

    Article  CAS  PubMed  Google Scholar 

  23. Zecca M et al. (2003) Rituximab for the treatment of refractory autoimmune hemolytic anemia in children. Blood 101: 3857–3861

    Article  CAS  PubMed  Google Scholar 

  24. Edwards JC et al. (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350: 2572–2581

    Article  CAS  PubMed  Google Scholar 

  25. Edwards JC and Cambridge G (2001) Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology (Oxford) 40: 205–211

    Article  CAS  Google Scholar 

  26. Emery P et al. (2005) Primary analysis of a double-blind, placebo-controlled, dose-ranging trial of rituximab, an anti-CD20 monoclonal antibody, in patients with rheumatoid arthritis receiving methotrexate (DANCER trial) [abstract]. Ann Rheum Dis 64 (Suppl III): 58

    Google Scholar 

  27. Anolik J et al. (2003) B cell depletion therapy in systemic lupus erythematosus. Curr Rheumatol Rep 5: 350–356

    Article  PubMed  Google Scholar 

  28. Sfikakis PP et al. (2005) Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial. Arthritis Rheum 52: 501–513

    Article  CAS  PubMed  Google Scholar 

  29. Gottenberg JE et al. (2005) Tolerance and short term efficacy of rituximab in 43 patients with systemic autoimmune diseases. Ann Rheum Dis 64: 913–920

    Article  CAS  PubMed  Google Scholar 

  30. Looney RJ et al. (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50: 2580–2589

    Article  CAS  PubMed  Google Scholar 

  31. van Vollenhoven RF et al. (2004) Biopsy-verified response of severe lupus nephritis to treatment with rituximab (anti-CD20 monoclonal antibody) plus cyclophosphamide after biopsy-documented failure to respond to cyclophosphamide alone. Scand J Rheumatol 33: 423–427

    Article  CAS  PubMed  Google Scholar 

  32. Armstrong DJ et al. (2004) Active systemic lupus erythematosus successfully treated with rituximab and oral steroid. Clin Exp Rheumatol 22: 787–788

    CAS  PubMed  Google Scholar 

  33. Anolik JH et al. (2003) The relationship of FcγRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48: 455–459

    Article  CAS  PubMed  Google Scholar 

  34. Anolik JH et al. (2004) Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum 50: 3580–3590

    Article  CAS  PubMed  Google Scholar 

  35. Dunham J et al. (2005) A longitudinal analysis of SLE patients treated with rituximab: a comparison of B cell depleters to partial B cell depleters [abstract]. Arthritis Rheum 52 (Suppl 9): S740

    Google Scholar 

  36. Teeling JL et al. (2004) Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104: 1793–1800

    Article  CAS  PubMed  Google Scholar 

  37. Herrera L et al. (2000) Immunotoxins against CD19 and CD22 are effective in killing precursor-B acute lymphoblastic leukemia cells in vitro. Leukemia 14: 853–858

    Article  CAS  PubMed  Google Scholar 

  38. Leonard JP et al. (2004) Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma: phase I/II clinical trial results. Clin Cancer Res 10: 5327–5334

    Article  CAS  PubMed  Google Scholar 

  39. Kremer JM et al. (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349: 1907–1915

    Article  CAS  PubMed  Google Scholar 

  40. Sidiropoulos PI and Boumpas DT (2004) Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus 13: 391–397

    Article  CAS  PubMed  Google Scholar 

  41. Pollard KM et al. (2004) Costimulation requirements of induced murine systemic autoimmune disease. J Immunol 173: 5880–5887

    Article  CAS  PubMed  Google Scholar 

  42. Stohl W (2005) BlySfulness does not equal blissfulness in systemic lupus erythematosus: a therapeutic role for BLyS antagonists. Curr Dir Autoimmun 8: 289–304

    Article  CAS  PubMed  Google Scholar 

  43. Nishimoto N et al. (2004) Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 50: 1761–1769

    Article  CAS  PubMed  Google Scholar 

  44. Tackey E et al. (2004) Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 13: 339–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Llorente L and Richaud-Patin Y (2003) The role of interleukin-10 in systemic lupus erythematosus. J Autoimmun 20: 287–289

    Article  CAS  PubMed  Google Scholar 

  46. Linnik MD et al. (2005) Relationship between anti-double-stranded DNA antibodies and exacerbation of renal disease in patients with systemic lupus erythematosus. Arthritis Rheum 52: 1129–1137

    Article  CAS  PubMed  Google Scholar 

  47. McGaha TL et al. (2005) Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307: 590–593

    Article  CAS  PubMed  Google Scholar 

  48. Mizuno T et al. (2003) Fas-induced apoptosis in B cells. Apoptosis 8: 451–460

    Article  CAS  PubMed  Google Scholar 

  49. Carter RH (2004) B cell signalling as therapeutic target. Ann Rheum Dis 63 (Suppl 2): ii65–ii66

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jego G et al. (2005) Dendritic cells control B cell growth and differentiation. Curr Dir Autoimmun 8: 124–139

    Article  CAS  PubMed  Google Scholar 

  51. Lund FE et al. (2005) Regulatory roles for cytokine-producing B cells in infection and autoimmune disease. Curr Dir Autoimmun 8: 25–54

    Article  CAS  PubMed  Google Scholar 

  52. Zuany-Amorim C et al. (2002) Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov 1: 797–807

    Article  CAS  PubMed  Google Scholar 

  53. Hutloff A et al. (2004) Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis Rheum 50: 3211–3220

    Article  PubMed  Google Scholar 

  54. Nakamura T et al. (1992) Heterogeneity of immunoglobulin-associated molecules on human B cells identified by monoclonal antibodies. Proc Natl Acad Sci USA 89: 8522–8526

    Article  CAS  PubMed  Google Scholar 

  55. Cyster JG (2003) Homing of antibody secreting cells. Immunol Rev 194: 48–60

    Article  CAS  PubMed  Google Scholar 

  56. Borland G and Cushley W (2004) Positioning the immune system: unexpected roles for α6-integrins. Immunology 111: 381–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kunkel EJ and Butcher EC (2003) Plasma-cell homing. Nat Rev Immunol 3: 822–829

    Article  CAS  PubMed  Google Scholar 

  58. Tobinai K et al. (1998) Feasibility and pharmacokinetic study of a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) in relapsed B-cell lymphoma. The IDEC-C2B8 Study Group. Annals of Oncology 9: 527–534

    Article  CAS  PubMed  Google Scholar 

  59. Edwards JC et al. (2005) B lymphocyte depletion in rheumatoid arthritis: targeting of CD20. Curr Dir Autoimmun 8: 175–192

    Article  CAS  PubMed  Google Scholar 

  60. Edwards JC and Cambridge G (2005) Prospects for B-cell-targeted therapy in autoimmune disease. Rheumatology (Oxford) 44: 151–156

    Article  CAS  Google Scholar 

  61. Bearden CM et al. (2005) Rituximab inhibits the in vivo primary and secondary antibody response to a neoantigen, bacteriophage phiX174. Am J Transplant 5: 50–57

    Article  CAS  PubMed  Google Scholar 

  62. Adelman BA et al. (2005) Natalizumab and progressive multifocal leukoencephalopathy. N Engl J Med 353: 432–433

    Article  CAS  PubMed  Google Scholar 

  63. D'Arcy CA and Mannik M (2001) Serum sickness secondary to treatment with the murine-human chimeric antibody IDEC-C2B8 (rituximab). Arthritis Rheum 44: 1717–1718

    Article  CAS  PubMed  Google Scholar 

  64. Tahir H et al. (2005) Humanized anti-CD20 monoclonal antibody in the treatment of severe resistant systemic lupus erythematosus in a patient with antibodies against rituximab. Rheumatology (Oxford) 44: 561–562

    Article  CAS  Google Scholar 

  65. Gong Q et al. (2005) Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 174: 817–826

    Article  CAS  PubMed  Google Scholar 

  66. Quartier P et al. (2001) Treatment of childhood autoimmune haemolytic anaemia with rituximab. Lancet 358: 1511–1513

    Article  CAS  PubMed  Google Scholar 

  67. Quartier P et al. (online 16 January 2003) Enteroviral meningoencephalitis after anti-CD20 (rituximab) treatment. [Link to original article] (accessed 30 September 2005)

  68. Cragg MS et al. (2005) The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 8: 140–174

    Article  CAS  PubMed  Google Scholar 

  69. Deans JP et al. (2002) CD20-mediated apoptosis: signalling through lipid rafts. Immunology 107: 176–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bezombes C et al. (2004) Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains. Blood 104: 1166–1173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Eisenberg.

Ethics declarations

Competing interests

R Eisenberg and D Albert are participating in trials with rituximab and epratuzumab, for which they receive monetary support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenberg, R., Albert, D. B-cell targeted therapies in rheumatoid arthritis and systemic lupus erythematosus. Nat Rev Rheumatol 2, 20–27 (2006). https://doi.org/10.1038/ncprheum0042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing