Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Insights into signaling from the β2-adrenergic receptor structure

Abstract

With more than 800 members, the G protein–coupled receptor family constitutes the largest group of membrane proteins involved in signal transduction. Until the end of last year, high-resolution three-dimensional structures were available for only one of them—the light receptor rhodopsin. Recently the structure of the β2-adrenergic receptor has been obtained, and it revealed interesting differences with the structure of rhodopsin. Analyses of these differences raise important questions about the binding modes of diffusible ligands in the receptor and allow formulation of testable hypotheses about the structural determinants linking drug binding to specific signaling responses. The three-dimensional structure derived from the β2-adrenergic receptor crystal has been used to virtually dock ligands with distinct activities. The different binding modes of these ligands, which correlated with their reported efficacy profiles, suggest that it could be possible to predict the structural determinants of drug signaling efficacies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of ligand-biased signaling for the β2-AR.
Figure 2: Comparison of carazolol-bound β2-AR and retinal-bound rhodopsin structures.
Figure 3: Comparison of ICL2, ion lock and toggle switch between β2-AR and rhodopsin.
Figure 4: Docking modes of β2-AR ligands with distinct efficacies toward AC and MAPK.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Benovic, J.L., Shorr, R.G.L., Caron, M.G. & Lefkowitz, R.J. The mammalian β2-adrenergic receptor: purification and characterization. Biochemistry 23, 4510–4518 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Rasmussen, S.G. et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosenbaum, D.M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl. Acad. Sci. USA 103, 16123–16128 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Bockaert, J., Fagni, L., Dumuis, A. & Marin, P. GPCR interacting proteins (GIP). Pharmacol. Ther. 103, 203–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lohse, M.J., Benovic, J.L., Codina, J., Caron, M.G. & Lefkowitz, R.J. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248, 1547–1550 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Shenoy, S.K. & Lefkowitz, R.J. Multifaceted roles of β-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem. J. 375, 503–515 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shenoy, S.K. et al. β-Arrestin-dependent, G protein-independent ERK1/2 activation by the β2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Daaka, Y., Luttrell, D.K. & Lefkowitz, R.J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Azzi, M. et al. β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 100, 11406–11411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galandrin, S., Oligny-Longpre, G. & Bouvier, M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28, 423–430 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ghanouni, P. et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β2 adrenergic receptor. J. Biol. Chem. 276, 24433–24436 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Swaminath, G. et al. Probing the β2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol. Chem. 280, 22165–22171 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Gales, C. et al. Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat. Struct. Mol. Biol. 13, 778–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Roth, C.B., Hanson, M.A. & Stevens, R.C. Stabilization of the human β2-adrenergic receptor TM4–TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. J. Mol. Biol. 376, 1305–1319 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Serrano-Vega, M.J., Magnani, F., Shibata, Y. & Tate, C.G. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl. Acad. Sci. USA 105, 877–882 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Costa, T., Ogino, Y., Munson, P.J., Onaran, H.O. & Rodbard, D. Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol. Pharmacol. 41, 549–560 (1992).

    CAS  PubMed  Google Scholar 

  20. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R.J. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268, 4625–4636 (1993).

    CAS  PubMed  Google Scholar 

  21. Chidiac, P., Hebert, T.E., Valiquette, M., Dennis, M. & Bouvier, M. Inverse agonist activity of β-adrenergic antagonists. Mol. Pharmacol. 45, 490–499 (1994).

    CAS  PubMed  Google Scholar 

  22. Samama, P., Pei, G., Costa, T., Cotecchia, S. & Lefkowitz, R.J. Negative antagonists promote an inactive conformation of the β2- adrenergic receptor. Mol. Pharmacol. 45, 390–394 (1994).

    CAS  PubMed  Google Scholar 

  23. Bond, R.A. & Ijzerman, A.P. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol. Sci. 27, 92–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Milligan, G. Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol. Pharmacol. 64, 1271–1276 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Rovati, G.E., Capra, V. & Neubig, R.R. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol. Pharmacol. 71, 959–964 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Watson, C. et al. The use of stimulus-biased assay systems to detect agonist-specific receptor active states: implications for the trafficking of receptor stimulus by agonists. Mol. Pharmacol. 58, 1230–1238 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Kenakin, T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol. Sci. 16, 232–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Baker, J.G., Hall, I.P. & Hill, S.J. Agonist and inverse agonist actions of β-blockers at the human β 2-adrenoceptor provide evidence for agonist-directed signaling. Mol. Pharmacol. 64, 1357–1369 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Galandrin, S. & Bouvier, M. Distinct signaling profiles of β1 and β2 adrenergic receptor ligands towards adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol. Pharmacol. 70, 1575–1584 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Yao, X. et al. Coupling ligand structure to specific conformational switches in the β2-adrenoceptor. Nat. Chem. Biol. 2, 417–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Janz, J.M. & Farrens, D.L. Rhodopsin activation exposes a key hydrophobic binding site for the transducin α-subunit C terminus. J. Biol. Chem. 279, 29767–29773 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Raimondi, F., Seeber, M., Benedetti, P.G. & Fanelli, F. Mechanisms of inter- and intramolecular communication in GPCRs and G proteins. J. Am. Chem. Soc. 130, 4310–4325 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Valiquette, M., Parent, S., Loisel, T.P. & Bouvier, M. Mutation of tyrosine-141 inhibits insulin-promoted tyrosine phosphorylation and increased responsiveness of the human β2- adrenergic receptor. EMBO J. 14, 5542–5549 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karoor, V. & Malbon, C.C. Insulin-like growth factor receptor-1 stimulates phosphorylation of the β2-adrenergic receptor in vivo on sites distinct from those phosphorylated in response to insulin. J. Biol. Chem. 271, 29347–29352 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. Le Gouill and A. Marinier for useful discussions, and to the Canadian Institute for Health Research Team in GPCR Allosteric Regulation (CTiGAR), the Direction Générale des Technologies de l'Information et des Communications (DGTIC) of the Université de Montréal and the NMR platform of Institute for Research in Immunology and Cancer (IRIC) for providing access to their servers for simulation and docking.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audet, M., Bouvier, M. Insights into signaling from the β2-adrenergic receptor structure. Nat Chem Biol 4, 397–403 (2008). https://doi.org/10.1038/nchembio.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.97

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing