Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo

Abstract

Pathological hyperphosphorylation of the microtubule-associated protein tau is characteristic of Alzheimer's disease (AD) and the associated tauopathies. The reciprocal relationship between phosphorylation and O-GlcNAc modification of tau and reductions in O-GlcNAc levels on tau in AD brain offers motivation for the generation of potent and selective inhibitors that can effectively enhance O-GlcNAc in vertebrate brain. We describe the rational design and synthesis of such an inhibitor (thiamet-G, Ki = 21 nM; 1) of human O-GlcNAcase. Thiamet-G decreased phosphorylation of tau in PC-12 cells at pathologically relevant sites including Thr231 and Ser396. Thiamet-G also efficiently reduced phosphorylation of tau at Thr231, Ser396 and Ser422 in both rat cortex and hippocampus, which reveals the rapid and dynamic relationship between O-GlcNAc and phosphorylation of tau in vivo. We anticipate that thiamet-G will find wide use in probing the functional role of O-GlcNAc in vertebrate brain, and it may also offer a route to blocking pathological hyperphosphorylation of tau in AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relationship between phosphorylation and O-GlcNAcylation on tau is a dynamic equilibrium.
Figure 2: Thiamet-G binds similarly to NButGT and exhibits small structural perturbations.
Figure 3: Thiamet-G inhibits O-GlcNAcase in PC-12 cells in both a dose- and time-dependent manner and reduces tau phosphorylation.
Figure 4: In vivo administration of thiamet-G reduces tau phosphorylation.
Figure 5: In vivo administration of thiamet-G reduces tau phosphorylation in the CA1 region of the hippocampus.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Braak, H., Braak, E., Grundke-Iqbal, I. & Iqbal, K. Occurrence of neuropil threads in the senile human brain and in Alzheimer's disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci. Lett. 65, 351–355 (1986).

    Article  CAS  Google Scholar 

  2. Lee, V.M., Goedert, M. & Trojanowski, J.Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001).

    Article  CAS  Google Scholar 

  3. Ksiezak-Reding, H., Liu, W.K. & Yen, S.H. Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments. Brain Res. 597, 209–219 (1992).

    Article  CAS  Google Scholar 

  4. Schneider, A., Biernat, J., von Bergen, M., Mandelkow, E. & Mandelkow, E.M. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38, 3549–3558 (1999).

    Article  CAS  Google Scholar 

  5. Sengupta, A. et al. Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch. Biochem. Biophys. 357, 299–309 (1998).

    Article  CAS  Google Scholar 

  6. Lindwall, G. & Cole, R.D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 259, 5301–5305 (1984).

    CAS  PubMed  Google Scholar 

  7. Arnold, C.S. et al. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J. Biol. Chem. 271, 28741–28744 (1996).

    Article  CAS  Google Scholar 

  8. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W. & Gong, C.X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101, 10804–10809 (2004).

    Article  CAS  Google Scholar 

  9. Torres, C.R. & Hart, G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317 (1984).

    CAS  PubMed  Google Scholar 

  10. Cheng, X., Cole, R.N., Zaia, J. & Hart, G.W. Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry 39, 11609–11620 (2000).

    Article  CAS  Google Scholar 

  11. Chou, T.Y., Hart, G.W. & Dang, C.V. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J. Biol. Chem. 270, 18961–18965 (1995).

    Article  CAS  Google Scholar 

  12. Comer, F.I. & Hart, G.W. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 40, 7845–7852 (2001).

    Article  CAS  Google Scholar 

  13. Zachara, N.E. & Hart, G.W. Cell signaling, the essential role of O-GlcNAc! Biochim. Biophys. Acta 1761, 599–617 (2006).

    Article  CAS  Google Scholar 

  14. Kreppel, L.K., Blomberg, M.A. & Hart, G.W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315 (1997).

    Article  CAS  Google Scholar 

  15. Lubas, W.A., Frank, D.W., Krause, M. & Hanover, J.A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316–9324 (1997).

    Article  CAS  Google Scholar 

  16. Dong, D.L. & Hart, G.W. Purification and characterization of an O-GlcNAc selective N-acetyl-β-D-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 269, 19321–19330 (1994).

    CAS  PubMed  Google Scholar 

  17. Gao, Y., Wells, L., Comer, F.I., Parker, G.J. & Hart, G.W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic β-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838–9845 (2001).

    Article  CAS  Google Scholar 

  18. Lefebvre, T. et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins–a role in nuclear localization. Biochim. Biophys. Acta 1619, 167–176 (2003).

    Article  CAS  Google Scholar 

  19. Li, X., Lu, F., Wang, J.Z. & Gong, C.X. Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur. J. Neurosci. 23, 2078–2086 (2006).

    Article  Google Scholar 

  20. Farook, V.S., Bogardus, C. & Prochazka, M. Analysis of MGEA5 on 10q24.1-q24.3 encoding the β-O-linked N-acetylglucosaminidase as a candidate gene for type 2 diabetes mellitus in Pima Indians. Mol. Genet. Metab. 77, 189–193 (2002).

    Article  CAS  Google Scholar 

  21. Le Corre, S. et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc. Natl. Acad. Sci. USA 103, 9673–9678 (2006).

    Article  CAS  Google Scholar 

  22. Engel, T., Goni-Oliver, P., Lucas, J.J., Avila, J. & Hernandez, F. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem. 99, 1445–1455 (2006).

    Article  CAS  Google Scholar 

  23. Mazanetz, M.P. & Fischer, P.M. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov. 6, 464–479 (2007).

    Article  CAS  Google Scholar 

  24. Macauley, M.S., Whitworth, G.E., Debowski, A.W., Chin, D. & Vocadlo, D.J. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J. Biol. Chem. 280, 25313–25322 (2005).

    Article  CAS  Google Scholar 

  25. Dorfmueller, H.C. et al. GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-GlcNAcylation levels. J. Am. Chem. Soc. 128, 16484–16485 (2006).

    Article  CAS  Google Scholar 

  26. Kim, E.J., Perreira, M., Thomas, C.J. & Hanover, J.A. An O-GlcNAcase-specific inhibitor and substrate engineered by the extension of the N-acetyl moiety. J. Am. Chem. Soc. 128, 4234–4235 (2006).

    Article  CAS  Google Scholar 

  27. Knapp, S. et al. Tautomeric modification of GlcNAc-thiazoline. Org. Lett. 9, 2321–2324 (2007).

    Article  CAS  Google Scholar 

  28. Shanmugasundaram, B. et al. Inhibition of O-GlcNAcase by a gluco-configured nagstatin and a PUGNAc-imidazole hybrid inhibitor. Chem. Commun. (Camb.) 4372–4374 (2006).

  29. Stubbs, K.A., Zhang, N. & Vocadlo, D.J. A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase. Org. Biomol. Chem. 4, 839–845 (2006).

    Article  CAS  Google Scholar 

  30. Haltiwanger, R.S., Grove, K. & Philipsberg, G.A. Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-β-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate. J. Biol. Chem. 273, 3611–3617 (1998).

    Article  CAS  Google Scholar 

  31. Horsch, M., Hoesch, L., Vasella, A. & Rast, D.M. N-acetylglucosaminono-1,5-lactone oxime and the corresponding (phenylcarbamoyl)oxime. Novel and potent inhibitors of β-N-acetylglucosaminidase. Eur. J. Biochem. 197, 815–818 (1991).

    Article  CAS  Google Scholar 

  32. Scaffidi, A. et al. A 1-acetamido derivative of 6-epi-valienamine: an inhibitor of a diverse group of β-N-acetylglucosaminidases. Org. Biomol. Chem. 5, 3013–3019 (2007).

    Article  CAS  Google Scholar 

  33. Zou, L. et al. The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock 27, 402–408 (2007).

    Article  CAS  Google Scholar 

  34. Macauley, M.S., Stubbs, K.A. & Vocadlo, D.J. O-GlcNAcase catalyzes cleavage of thioglycosides without general acid catalysis. J. Am. Chem. Soc. 127, 17202–17203 (2005).

    Article  CAS  Google Scholar 

  35. Knapp, S. et al. NAG-thiazoline, An N-acetyl-β-hexosaminidase inhibitor that implicates acetamido participation. J. Am. Chem. Soc. 118, 6804–6805 (1996).

    Article  CAS  Google Scholar 

  36. Whitworth, G.E. et al. Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise. J. Am. Chem. Soc. 129, 635–644 (2007).

    Article  CAS  Google Scholar 

  37. Cetinbas, N., Macauley, M.S., Stubbs, K.A., Drapala, R. & Vocadlo, D.J. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants. Biochemistry 45, 3835–3844 (2006).

    Article  CAS  Google Scholar 

  38. Knapp, S., Kirk, B., Vocadlo, D. & Withers, S. An allosamizoline/glucosamine hybrid NAGase inhibitor. Synlett 1997, 435–436 (1997).

    Article  Google Scholar 

  39. Terwisscha van Scheltinga, A.C. et al. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34, 15619–15623 (1995).

    Article  CAS  Google Scholar 

  40. Dennis, R.J. et al. Structure and mechanism of a bacterial β-glucosaminidase having O-GlcNAcase activity. Nat. Struct. Mol. Biol. 13, 365–371 (2006).

    Article  CAS  Google Scholar 

  41. Greene, L.A. & Tischler, A.S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73, 2424–2428 (1976).

    Article  CAS  Google Scholar 

  42. Comer, F.I., Vosseller, K., Wells, L., Accavitti, M.A. & Hart, G.W. Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal. Biochem. 293, 169–177 (2001).

    Article  CAS  Google Scholar 

  43. Li, T., Hawkes, C., Qureshi, H.Y., Kar, S. & Paudel, H.K. Cyclin-dependent protein kinase 5 primes microtubule-associated protein Tau site-specifically for glycogen synthase kinase 3β. Biochemistry 45, 3134–3145 (2006).

    Article  CAS  Google Scholar 

  44. Cho, J.H. & Johnson, G.V. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau's ability to bind and stabilize microtubules. J. Neurochem. 88, 349–358 (2004).

    Article  CAS  Google Scholar 

  45. Kasai, K. & Yamaji, N. Novel chromogenic substrates for the rate-assay of N-acetyl-β-D-glucosaminidase-resorufinyl-N-acetyl and resazurinyl-N-acetyl-β-D-glucosaminides. Anal. Sci. 8, 161–164 (1992).

    Article  CAS  Google Scholar 

  46. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  47. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Animal Care Facility at Simon Fraser University and Y. Deng for assistance with the animal studies. T. Gloster is thanked for assistance with the X-ray structural studies. We also thank the Canadian Institute for Health Research (CIHR), the Scottish Rite Charitable Foundation (SRCF) and the Biotechnology and Biological Sciences Research Council (BBSRC) for providing funding for this work. M.S.M. and X.S. are recipients of senior scholarships from the Michael Smith Foundation for Health Research (MSFHR). X.S. is a doctoral research scholarship holder from the CIHR and the ALS Society of Canada. M.S.M. is also a scholarship holder from the Natural Science and Engineering Research Council of Canada (NSERC). Y.H. is the recipient of University of York Wild Fund support. G.J.D. is a Royal Society-Wolfson Research Merit Award recipient. D.J.V. is a scholar of the MSFHR and the Canada Research Chair in Chemical Glycobiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J Vocadlo.

Ethics declarations

Competing interests

The authors declare that patent applications relevant to this work have been filed and that they are bound by confidentiality agreements preventing them from disclosing existing financial interests in this work.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 2406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuzwa, S., Macauley, M., Heinonen, J. et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 4, 483–490 (2008). https://doi.org/10.1038/nchembio.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing