Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ku70 suppresses the apoptotic translocation of Bax to mitochondria

A Retraction to this article was published on 01 April 2007

A Corrigendum to this article was published on 01 April 2004

Abstract

Bax induces mitochondrial-dependent cell death signals in mammalian cells. However, the mechanism of how Bax is kept inactive has remained unclear. Yeast-based functional screening of Bax inhibitors from mammalian cDNA libraries identified Ku70 as a new Bax suppressor. Bax-mediated apoptosis was suppressed by overexpression of Ku70 in mammalian cells, but enhanced by downregulation of Ku70. We found that Ku70 interacts with Bax, and that the carboxyl terminus of Ku70 and the amino terminus of Bax are required for this interaction. Bax is known to translocate from the cytosol to mitochondria when cells receive apoptotic stimuli. We found that Ku70 blocks the mitochondrial translocation of Bax. These results suggest that in addition to its previously recognized DNA repair activity in the nucleus, Ku70 has a cytoprotective function in the cytosol that controls the localization of Bax.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ku70 inhibits Bax-induced cell death.
Figure 2: Ku70 inhibits caspase activation and cytochrome c release.
Figure 3: Lowering Ku70 levels abolishes sensitivity to apoptotic stimuli.
Figure 4: Interaction of Ku70 and Bax.
Figure 5: Ku70 specifically inhibits the Bax-mediated cell death pathway.
Figure 6: Ku70 regulates the localization of Bax.
Figure 7: Ku70 suppresses the translocation of Bax to mitochondria.
Figure 8: Ku70 maintains the inactive state of Bax.

Similar content being viewed by others

References

  1. Reed, J.C. Double identity for proteins of the Bcl-2 family. Nature 387, 773–776 (1997).

    Article  CAS  Google Scholar 

  2. Gross, A., McDonnell, J.M. & Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).

    Article  CAS  Google Scholar 

  3. Adams, J.M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).

    Article  CAS  Google Scholar 

  4. Green, D.R. & Reed, J.C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  5. Reed, J.C., Jurgensmeier, J.M. & Matsuyama, S. Bcl-2 family proteins and mitochondria. Biochim. Biophys. Acta 1366, 127–137 (1998).

    Article  CAS  Google Scholar 

  6. Zou, H., Henzel, W.J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  Google Scholar 

  7. Green, D.R. Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1–4 (2000).

    Article  CAS  Google Scholar 

  8. Jurgensmeier, J.M. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl Acad. Sci. USA 95, 4997–5002 (1998).

    Article  CAS  Google Scholar 

  9. Kluck, R.M., Bossy-Wetzel, E., Green, D.R. & Newmeyer, D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).

    Article  CAS  Google Scholar 

  10. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).

    Article  CAS  Google Scholar 

  11. Wolter, K.G. et al. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139, 1281–1292 (1997).

    Article  CAS  Google Scholar 

  12. Saito, M., Korsmeyer, S.J. & Schlesinger, P.H. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nature Cell Biol. 2, 553–555 (2000).

    Article  CAS  Google Scholar 

  13. Korsmeyer, S.J. et al. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7, 1166–1173 (2000).

    Article  CAS  Google Scholar 

  14. Xu, Q. & Reed, J.C. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell 1, 337–346 (1998).

    Article  CAS  Google Scholar 

  15. Xu, Q., Ke, N., Matsuyama, S. & Reed, J.C. Assays for studying Bax-induced lethality in the yeast Saccharomyces cerevisiae. Methods Enzymol. 322, 283–296 (2000).

    Article  CAS  Google Scholar 

  16. Walker, J.R., Corpina, R.A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607–614 (2001).

    Article  CAS  Google Scholar 

  17. Fewell, J.W. & Kuff, E.L. Intracellular redistribution of Ku immunoreactivity in response to cell–cell contact and growth modulating components in the medium. J. Cell Sci. 109, 1937–1946 (1996).

    CAS  Google Scholar 

  18. Khanna, K.K. & Jackson, S.P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001).

    Article  CAS  Google Scholar 

  19. Wang, J., Dong, X., Myung, K., Hendrickson, E.A. & Reeves, W.H. Identification of two domains of the p70 Ku protein mediating dimerization with p80 and DNA binding. J. Biol. Chem. 273, 842–848 (1998).

    Article  CAS  Google Scholar 

  20. Deveraux, Q.L., Takahashi, R., Salvesen, G.S. & Reed, J.C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).

    Article  CAS  Google Scholar 

  21. Wei, M.C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  Google Scholar 

  22. Hsu, Y.T. & Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273, 10777–10783 (1998).

    Article  CAS  Google Scholar 

  23. Suzuki, M., Youle, R.J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).

    Article  CAS  Google Scholar 

  24. Rampino, N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969 (1997).

    Article  CAS  Google Scholar 

  25. Ashkenazi, A. & Dixit, V.M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  Google Scholar 

  26. Goping, I.S. et al. Regulated targeting of BAX to mitochondria. J. Cell Biol. 143, 207–215 (1998).

    Article  CAS  Google Scholar 

  27. Cartron, P.F. et al. Involvement of the N-terminus of Bax in its intracellular localization and function. FEBS Lett. 512, 95–100 (2002).

    Article  CAS  Google Scholar 

  28. Yang, C.R. et al. Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc. Natl Acad. Sci. USA 97, 5907–5912 (2000).

    Article  CAS  Google Scholar 

  29. Johnson, D.E. Noncaspase proteases in apoptosis. Leukemia 14, 1695–1703 (2000).

    Article  CAS  Google Scholar 

  30. Nechushtan, A., Smith, C.L., Hsu, Y.T. & Youle, R.J. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J. 18, 2330–2341 (1999).

    Article  CAS  Google Scholar 

  31. Kim, S.H. et al. Ku autoantigen affects the susceptibility to anticancer drugs. Cancer Res. 59, 4012–4017 (1999).

    CAS  PubMed  Google Scholar 

  32. Deckwerth, T.L. et al. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17, 401–411 (1996).

    Article  CAS  Google Scholar 

  33. Nishita, M., Inoue, S., Tsuda, M., Tateda, C. & Miyashita, T. Nuclear translocation and increased expression of Bax and disturbance in cell cycle progression without prominent apoptosis induced by hyperthermia. Exp. Cell Res. 244, 357–366 (1998).

    Article  CAS  Google Scholar 

  34. Mandal, M., Adam, L., Mendelsohn, J. & Kumar, R. Nuclear targeting of Bax during apoptosis in human colorectal cancer cells. Oncogene 17, 999–1007 (1998).

    Article  CAS  Google Scholar 

  35. Hoetelmans, R. et al. Bcl-2 and Bax proteins are present in interphase nuclei of mammalian cells. Cell Death Differ. 7, 384–392 (2000).

    Article  CAS  Google Scholar 

  36. Salah-eldin, A., Inoue, S., Tsuda, M. & Matsuura, A. Abnormal intracellular localization of Bax with a normal membrane anchor domain in human lung cancer cell lines. Jpn. J. Cancer Res. 91, 1269–1277 (2000).

    Article  CAS  Google Scholar 

  37. Wilson, C.R. et al. Expression of Ku70 correlates with survival in carcinoma of the cervix. Br. J. Cancer 83, 1702–1706 (2000).

    Article  CAS  Google Scholar 

  38. Zhao, H.J. et al. DNA-dependent protein kinase activity correlates with Ku70 expression and radiation sensitivity in esophageal cancer cell lines. Clin. Cancer Res. 6, 1073–1078 (2000).

    CAS  PubMed  Google Scholar 

  39. Kim, G.W., Noshita, N., Sugawara, T. & Chan, P.H. Early decrease in DNA repair proteins, Ku70 and Ku86, and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke 32, 1401–1407 (2001).

    Article  CAS  Google Scholar 

  40. Matsuyama, S., Xu, Q., Velours, J. & Reed, J.C. The Mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell 1, 327–336 (1998).

    Article  CAS  Google Scholar 

  41. Matsuyama, S., Schendel, S.L., Xie, Z. & Reed, J.C. Cytoprotection by Bcl-2 requires the pore-forming α5 and α6 helices. J. Biol. Chem. 273, 30995–31001 (1998).

    Article  CAS  Google Scholar 

  42. Wang, H.G., Rapp, U.R. & Reed, J.C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–638 (1996).

    Article  CAS  Google Scholar 

  43. Goldstein, J.C., Waterhouse, N.J., Juin, P., Evan, G.I. & Green, D.R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Takahashi (Riken Brain Science Research Institute), M. Miura (Riken Brain Research Institute), D. Green (La Jolla Institute for Allergy and Immunology), J. Reed (The Burnham Institute), J. Gorski (Blood Research Institute) and D. Wang for their invaluable suggestions, critical reviewing of the manuscript and encouragement. This work was supported in part by the Blood Center Research Foundation, Northwest Mutual Foundation, Taiho Pharmaceutical Company Ltd. for S.M., and in part by National Institute of Health/National Cancer Institute grant # CA78530 to D.A.B. Supplementary Information accompanies the paper on www.nature.com/naturecellbiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigemi Matsuyama.

Supplementary information

Supplementary Figures

Figure S1 a, Flow cytometric propidium iodide (PI) exclusion analysis. (PPT 2857 kb)

Figure S2 a-d, „Entire gels” of co-immunoprecipitation (co-ip) of endogenous Ku70 and Bax.

Figure S3 a-d, The interaction between Ku70 and Bax in primary mouse brain (a and b) and primary mouse fibroblasts (c and d).

Figure S4 a, Ku70-deficiency alone does not induce membrane integration of Bax in mitochondria.

Figure legends (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, M., Sun, W., Hayes, P. et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5, 320–329 (2003). https://doi.org/10.1038/ncb950

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing