Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A new phospholipase-C–calcium signalling pathway mediated by cyclic AMP and a Rap GTPase

Abstract

Stimulation of phosphoinositide-hydrolysing phospholipase C (PLC) generating inositol-1,4,5-trisphosphate is a major calcium signalling pathway used by a wide variety of membrane receptors, activating distinct PLC-β or PLC-γ isoforms1,2,3,4. Here we report a new PLC and calcium signalling pathway that is triggered by cyclic AMP (cAMP) and mediated by a small GTPase of the Rap family. Activation of the adenylyl cyclase-coupled β2-adrenoceptor expressed in HEK-293 cells or the endogenous receptor for prostaglandin E1 in N1E-115 neuroblastoma cells induced calcium mobilization and PLC stimulation, seemingly caused by cAMP formation, but was independent of protein kinase A (PKA). We provide evidence that these receptor responses are mediated by a Rap GTPase, specifically Rap2B, activated by a guanine-nucleotide-exchange factor (Epac) regulated by cAMP5,6, and involve the recently identified PLC-ɛ isoform7,8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: β2-AR- and forskolin-induced calcium and PLC signalling.
Figure 2: β2-AR- and forskolin-induced PLC and calcium signalling is independent of PKA and potentiated by Epac1.
Figure 3: Inhibition of β2-AR- and forskolin-induced PLC and calcium signalling by toxin B-1470 and an inactive Rap2B mutant.
Figure 4: Potentiation of β2-AR- and forskolin-induced PLC and calcium signalling by PLC-ɛ.
Figure 5: Influence of Rap2B on PLC-ɛ activity.

Similar content being viewed by others

References

  1. Berridge, M. J. & Irvine, R. F. Nature 341, 197–205 (1989).

    Article  CAS  Google Scholar 

  2. Berridge, M. J., Lipp, P. & Bootman, M. D. Nature Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  3. Exton, J. H. Annu. Rev. Pharmacol. Toxicol. 36, 481–509 (1996).

    Article  CAS  Google Scholar 

  4. Rhee, S. G. & Bae, Y. S. J. Biol. Chem. 272, 15045–15048 (1997).

    Article  CAS  Google Scholar 

  5. De Rooij, J. et al. Nature 396, 474–477 (1998).

    Article  CAS  Google Scholar 

  6. De Rooij, J. et al. J. Biol. Chem. 275, 20829–20836 (2000).

    Article  CAS  Google Scholar 

  7. Lopez, I., Mak, E. C., Ding, J., Hamm, H. E. & Lomasney, J. W. J. Biol. Chem. 276, 2758–2765 (2001).

    Article  CAS  Google Scholar 

  8. Kelley, G. G., Reks, S. E., Ondrako, J. M. & Smrcka, A. V. EMBO J. 20, 743–754 (2001).

    Article  CAS  Google Scholar 

  9. Song, C. et al. J. Biol. Chem. 276, 2752–2757 (2001).

    Article  CAS  Google Scholar 

  10. Park, D. J., Min, H. K. & Rhee, S. G. J. Biol. Chem. 267, 1496–1501 (1992).

    CAS  PubMed  Google Scholar 

  11. Liu, M. & Simon, M. I. Nature 382, 83–87 (1996).

    Article  CAS  Google Scholar 

  12. Meyer zu Heringdorf, D. et al. EMBO J. 17, 2830–2837 (1998).

    Article  CAS  Google Scholar 

  13. Schmidt, M. et al. J. Biol. Chem. 275, 32603–32610 (2000).

    Article  CAS  Google Scholar 

  14. Daaka, Y., Luttrell, L. M. & Lefkowitz, R. J. Nature 390, 88–91 (1997).

    Article  CAS  Google Scholar 

  15. Hanoune, J. & Defer, N. Annu. Rev. Pharmacol. Toxicol. 41, 145–174 (2001).

    Article  CAS  Google Scholar 

  16. Walsh, D. A. & van Patten, S. M. FASEB J. 8, 1227–1236 (1994).

    Article  CAS  Google Scholar 

  17. Chijiwa, T. et al. J. Biol. Chem. 265, 5267–5272 (1990).

    CAS  Google Scholar 

  18. Schmidt, M. et al. J. Biol. Chem. 273, 7413–7422 (1998).

    Article  CAS  Google Scholar 

  19. Just, I. et al. Nature 375, 500–503 (1995).

    Article  CAS  Google Scholar 

  20. Voβ, M. et al. J. Biol. Chem. 274, 34691–34698 (1999).

    Article  Google Scholar 

  21. Murthy, S. N. P., Lomasney, J. W., Mak, E. C. & Lorand, L. Proc. Natl Acad. Sci. USA 96, 11815–11819 (1999).

    Article  CAS  Google Scholar 

  22. Kim, Y.-H. et al. J. Biol. Chem. 274, 26127–26134 (1999).

    Article  CAS  Google Scholar 

  23. Matsuzawa, H. & Nirenberg, M. Proc. Natl Acad. Sci. USA 72, 3472–3476 (1975).

    Article  CAS  Google Scholar 

  24. Kanba, S. et al. J. Neurochem. 57, 2011–2015 (1991).

    Article  CAS  Google Scholar 

  25. Missale, C., Nash, R., Robinson, S. W., Jaber, M. & Caron M. G. Physiol. Rev. 78, 189–225 (1998).

    Article  CAS  Google Scholar 

  26. de la Peña, P., del Camino, D., Prado, L. A., Domínguez, P. & Barros, F. J. Biol. Chem. 270, 3554–3559 (1995).

    Article  Google Scholar 

  27. Lin, C. W. et al. Mol. Pharmacol. 47, 131–139 (1995).

    CAS  PubMed  Google Scholar 

  28. Chik, C. L. et al. J. Neurochem. 67, 1005–1013 (1996).

    Article  CAS  Google Scholar 

  29. Daniel, P. B., Kieffer, T. J., Leech, C. A. & Habener, J. F. J. Biol. Chem. 276, 12938–12944 (2001).

    Article  CAS  Google Scholar 

  30. Bos, J. L. EMBO J. 17, 6776–6782 (1998).

    Article  CAS  Google Scholar 

  31. Bos, J. L., de Rooij, J. & Reedquist, K. A. Nature Rev. Mol. Cell Biol. 2, 369–377 (2001).

    Article  CAS  Google Scholar 

  32. Evellin, S. et al. Naunyn-Schmiedeberg's Arch. Pharmacol. 363, R61 (2001).

    Google Scholar 

  33. Zhang, C., Schmidt, M., von Eichel-Streiber, C. & Jakobs, K. H. Mol. Pharmacol. 50, 864–869 (1996).

    CAS  PubMed  Google Scholar 

  34. Schmidt, M. et al. Naunyn-Schmiedeberg's Arch. Pharmacol. 354, 87–94 (1996).

    Article  CAS  Google Scholar 

  35. Van den Berghe, N., Cool, R. H., Horn, G. & Wittinghofer, A. Oncogene 15, 845–850 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Baden, M. Hagedorn, H. Geldermann, D. Petermeyer, M. Michel and A. Rueppel for expert technical assistance, and R. Jockers, J. de Gunzburg, J. L. Bos, A. Wittinghofer and C. von Eichel-Streiber for providing various DNA constructs and proteins. This work was supported by the Deutsche Forschungsgemeinschaft, the Interne Forschungsförderung Essen (IFORES), the Fonds der Chemischen Industrie and the Council of Earth and Life Sciences and Chemical Sciences of The Netherlands Organisation for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Schmidt.

Supplementary information

Figure S1

PGE1- and forskolin-induced PLC stimulation in N1E-115 neuroblastoma cells: role of cAMP, PKA, Epac1, Rap2B and PLC-ɛ (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Evellin, S., Weernink, P. et al. A new phospholipase-C–calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 3, 1020–1024 (2001). https://doi.org/10.1038/ncb1101-1020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-1020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing