Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

ICE/CED3-like Proteases as Therapeutic Targets for the Control of Inappropriate Apoptosis

Abstract

Excessive or failed apoptosis is a prominent morphological feature of several human diseases. Many of the key biochemical players that contribute to the highly ordered process of apoptotic cell death have recently been identified. These include members of the emerging family of cysteine proteases related to mammalian interleukin-1β converting enzyme (ICE) and to CED-3, the product of a gene that is necessary for programmed cell death in the nematode C. elegans. Among a growing number of potential molecular targets for the control of human diseases where inappropriate apoptosis is prominent, ICE/CED-3-like proteases may be an attractive and tangible point for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kerr, J.R., Wyllie, A.H. and Currie, A.R. 1972. Apoptosis: a basic biological phe-nomenom with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bursch, W., Oberhammer, F. and Schulte-Hermann, R. 1992. Cell death by apoptosis and its protective role against disease. Trends Pharm. Sci. 13: 245–251.

    CAS  PubMed  Google Scholar 

  3. Carson, D.A. and Ribiero, J.M. 1993. Apoptosis and disease. Lancet 341: 1251–1254.

    CAS  PubMed  Google Scholar 

  4. Barr, P.J. and Tomei, L.D. 1994. Apoptosis and its role in human disease. Bio/Technology 12: 487–493.

    CAS  Google Scholar 

  5. Häcker, G. and Vaux, D.L. 1995. The medical significance of physiological cell death. Medicinal Res. Rev. 15: 299–311.

    Google Scholar 

  6. Thompson, C.B. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462.

    CAS  PubMed  Google Scholar 

  7. Su, J.H., Anderson, A.J., Cummings, B.J. and Cotman, C.W. 1994. Immunohistochemical evidence for apoptosis in Alzheimer's disease. Neuroreport 5: 2529–2533.

    Article  CAS  PubMed  Google Scholar 

  8. Lassmann, H., Bancher, C., Breitschopf, H., Wegiel, J., Bobinski, M., Jellinger, K. and Wisniewski, H.M. 1995. Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ . Ada Neuropathol. 89: 35–41.

    CAS  Google Scholar 

  9. Smale, G., Nichols, N.R., Brady, D.R., Finch, C.E. and Horton, W.E. 1995. Evidence for apoptotic cell death in Alzheimer's disease. Exp. Neurol. 133: 225–230.

    CAS  PubMed  Google Scholar 

  10. Forloni, G., Chiesa, T., Smiroldo, S., Verga, L., Salmona, M., Tagliavini, T. and Angeretti, N. 1993. Apoptosis mediated neurotoxicity induced by chronic application of 13 amyloid fragment 25-35. Neuroreport 4: 523–526.

    CAS  PubMed  Google Scholar 

  11. Loo, D.T., Copani, A., Pike, C.J., Whittemore, E.R., Walencewicz, A.J. and Cotman, C.W. 1993. Apoptosis is induced by B-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA 90: 7951–7955.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Roy, N., Mahadevan, M.S., McLean, M., Shutler, G., Yaraghi, Z., Farahani, R., Baird, S., Besner-Johnston, A., Lefebvre, C., Kang, X., Salih, M., Aubry, H., Ramai, K., Guan, X., loannou, P., Crawford, T.O., de Jong, P.J., Surh, L., Ikeda, J.E., Korneluk, R.G., and Mackenzie, A., 1995. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80: 167–178.

    CAS  PubMed  Google Scholar 

  13. Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Cherton-Horvat, G., Farahani, R., McLean, M., Ikeda, J.-E., MacKenzie, A. and Korneluk, R.G. 1996. Supression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379: 349–353.

    CAS  PubMed  Google Scholar 

  14. Zeitlin, S., Liu, J.-R., Chapman, D.L., Papaioannou, V.E. and Efstratiadis, A. 1995. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nature Genetics 11: 155–163.

    CAS  PubMed  Google Scholar 

  15. Portera-Cailliau, C., Hedreen, J.C., Price, D.L. and Koliatsos, V.E. 1995. Evidence for apoptotic cell death in Huntington disease and exocitotoxic animal models. J. Neurosci. 15: 3775–3787.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Thomas, L.B., Gates, D.J., Richfield, E.K., O'Brien, T.R., Schweitzer, J.B. and Steindler, D.A. 1995. DNA end labeling (TUNEL) in Huntington's disease and other neurpathological conditions. Exp. Neurol. 133: 265–272.

    CAS  PubMed  Google Scholar 

  17. White, E. 1994. p53, guardian of Rb. Nature 371: 21–22.

    CAS  PubMed  Google Scholar 

  18. Hartwell, L.H. and Kastan, M.B. 1994. Cell cycle control and cancer. Science 266: 1821–1828.

    Article  CAS  PubMed  Google Scholar 

  19. Carston, D.A. and Lois, A. 1995. Cancer progression and p53. Lancet 346: 1009–1011.

    Google Scholar 

  20. Evan, G.I., Brown, L., Whyte, M. and Harrington, E. 1995. Apoptosis and the cell cycle. Cum Biol. 7: 825–834.

    CAS  Google Scholar 

  21. Enoch, T. and Norbury, C. 1995. Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biol. Sci. 20: 426–430.

    CAS  Google Scholar 

  22. Reed, J.C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124: 1–6.

    CAS  PubMed  Google Scholar 

  23. Hockenbery, D.M. 1994. bcl-2 in cancer, development and apoptosis. J. Cell Sci. 18: 51–55.

    CAS  Google Scholar 

  24. Hawkins, C.J. and Vaux, D.L. 1994. Analysis of the role of bcl-2 in apoptosis. Immunol. Rev. 142: 127–139.

    CAS  PubMed  Google Scholar 

  25. Korsmeyer, S.J. 1995. Regulators of cell death. Trends Genet. 11: 101–105.

    CAS  PubMed  Google Scholar 

  26. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. and Nagata, S. 1992. Lymphoproliferative disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317.

    CAS  PubMed  Google Scholar 

  27. Takahashi, T., Tanaka, M., Brannan, C.I., Jenkins, N.A., Copeland, N.G., Suda, T. and Nagata, S. 1994. Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas ligand. Cell 76: 969–976.

    CAS  PubMed  Google Scholar 

  28. Rose, L.M., Latchman, D.S. and Isenberg, D.A. 1994. Bcl-2 and Fas, molecules which influence apoptosis. A possible role in systemic lupus erythematosus? Autoimmunity 17: 271–278.

    CAS  PubMed  Google Scholar 

  29. Tan, E.M. 1994. Autoimmunity and apoptosis. J. Exp. Med. 179: 1083–1086.

    CAS  PubMed  Google Scholar 

  30. Casciola-Rosen, L.A., Anhalt, G. and Rosen, A. 1994. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179: 1317–1330.

    CAS  PubMed  Google Scholar 

  31. Casciola-Rosen, L.A., Anhalt, G. and Rosen, A. 1995. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182: 1625–1634.

    CAS  PubMed  Google Scholar 

  32. Chiou, S.-K., Tseng, C.-C., Rao, L. and White, E. 1994. Functional complementation of the adenovirus E1B 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells. J. Virol. 68: 6553–6566.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. White, E. 1995. Regulation of p53-dependent apoptosis by E1A and E1B. Curr. Topics Micro. Immun. 199: 34–58.

    Google Scholar 

  34. Rabizadeh, S., LaCount, D.J., Friesen, P.D. and Bredesen, D.E. 1993. Expression of the baculovirus p35 gene inhibits mammalian neural cell death. J. Neurochem. 61: 2318–2321.

    CAS  PubMed  Google Scholar 

  35. Sugimoto, A., Friesen, P.D. and Rothman, J.H. 1994. Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutan in the nema-tode Caenorhabditis elegans . EMBO J. 13: 2023–2028.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bimbaum, M.J., Clem, R.J. and Miller, L.K. 1994. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J. Virol. 68: 2521–2528.

    Google Scholar 

  37. Clem, R.J. and Miller, L.K. 1994. Control of programmed cell death by the baculovirus genes p35 and iap. Molec. Cell. Biol. 14: 5212–5222.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ellis, R.E., Yuan, J. and Horvitz, H.R. Mechanisms and functions of cell death. Annu. Rev. Cell. Biol. 7: 663–698. 1991.

    CAS  PubMed  Google Scholar 

  39. Yuan, J., Shaham, S., Ledoux, S., Ellis, J.M. and Horvitz, J.R., 1993. The elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 1β-converting enzyme. Cell 75: 641–652.

    CAS  PubMed  Google Scholar 

  40. Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A. and Yuan, J. 1993. Induction of apoptosis in fibroblasts by IL-113-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 78: 653–660.

    Google Scholar 

  41. Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K., Molineaux, S.M., Weidner, J.R., Aunins, J., Elliston, K.O., Ayala, J.M., Casano, F.J., Chin, J., Ding, G.J.-R., Egger, L.A., Gaffney, E.P., Limjuco, G., Palyha, O.C., Raju, S.M., Rolando, A.M., Salley, J.P., Yamin, T.-T., Lee, T.D., Shively, J.E., MacCross, M., Mumford, R.A., Schmidt, J.A. and Tocci, M.J. 1992. A novel heterodimeric cysteine protease is required for inter-leukin-1β processing in monocytes. Nature 356: 768–774.

    CAS  PubMed  Google Scholar 

  42. Cerretti, D.P., Kozlosky, C.J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T.A., March, C.J., Kronheim, S.R., Druck, T., Cannizzaro, L.A., Huebner, K. and Black, R.A. 1992. Molecular cloning of the interleukin-1β converting enzyme. Science 256: 97–100.

    CAS  PubMed  Google Scholar 

  43. Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J., Towne, E., Tracey, D., Wardwell, S., Wei, R.-Y., Wong, W., Kamen, R. and Seshadri, T. 1995. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80: 401–411.

    CAS  PubMed  Google Scholar 

  44. Kuida, K., Lippke, J.A., Ku, G., Harding, M.W., Livingston, D.J., Su, M.S.-S. and Flavell, R.A. 1995. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267: 2000–2003.

    CAS  PubMed  Google Scholar 

  45. Enari, M., Hug, H. and Nagata, S. 1995. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375: 78–81.

    CAS  PubMed  Google Scholar 

  46. Los, M. Van de Craen, M., Penning, L.C., Schenk, H., Westendorp, M., Baeuerle, P.A., Dröge, W., Krammer, P.H., Fiers, W. and Schulze-Osthoff, K. 1995. Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature 375: 81–83.

    CAS  PubMed  Google Scholar 

  47. Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E. and Poirier, G.G. 1993. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53: 3976–3985.

    CAS  PubMed  Google Scholar 

  48. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. and Eamshaw, W.C. 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346–347.

    CAS  PubMed  Google Scholar 

  49. Casciola-Rosen, L.A., Miller, D.K., Anhalt, G.J. and Rosen, A. 1994. Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleo-protein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269: 30757–30760.

    CAS  PubMed  Google Scholar 

  50. Casciola-Rosen, L., Nicholson, D.W., Chong, K.R., Rowan, K.R., Thornberry, N.A., Miller, D.K. and Rosen, A. 1996. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J. Exp. Med. In press.

  51. Martin, S.J., O'Brien, G.A., Nishioka, W.K., McGahon, A.J., Mahboubi, A., Saido, T.C. and Green, D.R. 1995. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem. 270: 6425–6428.

    CAS  PubMed  Google Scholar 

  52. Lazebnik, Y.A., Takahashi, A., Moir, R.D., Goldman, R.D., Poirier, G.G., Kaufmann, S.H. and Earnshaw, W.C. 1995. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natl. Acad. Sci. USA 92: 9042–9046.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Brancolini, C., Benedetti, M. and Schneider, C. 1995. Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-like proteases. EMBO J. 14: 5179–5190.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mashima, T., Naito, M., Fujita, N., Noguchi, K. and Tsuruo, T. 1995. Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16-induced U937 apoptosis. Biochem. Biophys. Res. Commun. 217: 1185–1192.

    CAS  PubMed  Google Scholar 

  55. Wang, X., Pai, J.-T., Wiedenfeld, E.A., Medina, J.C., Slaughter, C.A., Goldstein, J.L. and Brown, M.S. 1995. Purification of an interleukin-1β converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. J. Biol. Chem. 270: 18044–18050.

    CAS  PubMed  Google Scholar 

  56. Emoto, Y., Manome, Y., Meinhardt, G., Kisaki, H., Kharbanda, S., Robertson, M., Ghayur, T., Wong, W.W., Kamen, R., Weichselbaum, R. and Kufe, D. 1995. Proteolytic activation of protein kinase C d by an ICE-like protease in apoptotic cells. EMBO J. 14: 6148–6156.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Munday, N.A., Vallancourt, J.P., Ali, A., Casano, R.J., Miller, D.K., Molineaux, S.M., Yamin, T.-T., Yu, V.L. and Nicholson, D.W. 1995. Molecular cloning and pro-apoptotic activity of ICErel-ll and ICErel-lll, members of the ICE/CED-3 family of cysteine proteinases. J. Biol. Chem. 270: 15870–15876.

    CAS  PubMed  Google Scholar 

  58. Faucheu, C., Diu, A., Chan, A.W.E., Blanchet, A.-M., Miossec, C., Herve, F., Collard-Dutilleul, V., Gu, Y., Aldape, R.A., Lippke, J.A., Rocher, C., Su, M.S.-S., Livingston, D.J., Hercend, T. and Lalanne, J.-L. 1995. A novel human protease similar to the interleukin-1β converting enzyme induces apoptosis in transfected cells. EMBO J. 14: 1914–1922.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kamens, J., Paskind, M., Hugunin, M., Talanian, R.V., Allen, H., Banach, D., Bump, N., Hackett, M., Johnston, C.G., Li, P., Mankovich, J.A., Terranova, M. and Ghayur, T. 1995. Identification and characterization of ICH-2, a novel member of the interleukin-1β-converting enzyme family of cysteine proteases. J. Biol. Chem. 270: 15250–15256.

    CAS  PubMed  Google Scholar 

  60. Kumar, S., Tomooka, Y. and Noda, M. 1992. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Commun. 185: 1155–1161.

    CAS  PubMed  Google Scholar 

  61. Kumar, S., Kinoshita, M., Noda, M., Copeland, N.G. and Jenkins, N.A. 1994. Induction of apoptosis by mouse Nedd2 gene encoding a protein similar to the C. elegans cell death gene ced-3 and mammalian IL-1 β-converting enzyme. Genes and Develop. 8: 1613–1626.

    CAS  Google Scholar 

  62. Wang, L., Miura, M., Bergeron, L., Zhu, J. and Yuan, J. . 1994. lch-1, an ICE/CED-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78: 739–750.

    CAS  PubMed  Google Scholar 

  63. Femandes-Alnemri, T., Litwack, G. and Alnemri, E.S. 1994. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein CED-3 and mammalian interleukin-1 1β-converting enzyme. J. Biol. Chem. 269: 30761–30764.

    Google Scholar 

  64. Fernandes-Alnemri, T., Litwack, G. and Alnemri, E.S., 1995. a new member of the apoptotic CED-3/ICE cysteine protease gene family. Cancer Res. 55: 2737–2742.

    CAS  PubMed  Google Scholar 

  65. Fernandes-Alnemri, T., Takahashi, A., Armstrong, R., Krebs, J., Fritz, L., Tomaselli, K.J., Wang, L., Yu, Z., Croce, C.M., Salveson, G., Earnshaw, W.C., Litwack, G. and Alnemri, E.S. 1995. Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res. 55: 6045–6052.

    CAS  PubMed  Google Scholar 

  66. Duan, H., Chinnaiyan, A.M., Hudson, P.L., Wing, J.P., He, W.-W. and Dixit, V.M. 1996. ICE-LAP3, a novel mammalian homolog of the Caenorhabditis elegans cell death protein CED-3 is activated during Fas- and tumor necrosis factor-induced apoptosis. J. Biol. Chem. In press

  67. Nicholson, D.W., Ali, A., Thornberry, N.A., Vaillancourt, J.P., Ding, C.K., Gallant, M., Gareau, Y., Griffin, P.R., Labelle, M., Lazebnik, Y.A., Munday, N.A., Raju, A.M., Smulson, M.E., Yamin, T.-T., Yu, V.L. and Miller, D.K. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43.

    CAS  PubMed  Google Scholar 

  68. Tewari, M., Quan, L.T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salveson, G.S. and Dixit, V.M., 1995. PP32B, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801–809.

    CAS  PubMed  Google Scholar 

  69. Schlegel, J., Peters, I., Orrenius, S., Miller, D.K., Thornberry, N.A., Yamin, T.-T. and Nicholson, D.W. 1996. CPP32/apopain is a key interleukin-1β converting enzyme-like protease involved in Fas-mediated apoptosis. J. Biol. Chem. 271: 1841–1844.

    CAS  PubMed  Google Scholar 

  70. Jacobson, M.D., Weil, M. and Raff, M.C. 1996. Role of CED-3/ICE-family proteases in staurosporine-induced programmed cell death. J. Cell Biol. In press.

  71. Martin, S.J., Amarante-Mendes, G.P., Shi, L., Chuang, T.-H., Casiano, C.A., O'Brien, G.A., Fitzgerald, P., Tan, E.M., Bokoch, G.M., Greenberg, A.H. and Green, D.R. 1996. The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3-family protease, CPP32. EMBO J. In press.

  72. Darmon, A.J., Nicholson, D.W. and Bleackley, R.C. 1995. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377: 446–448.

    CAS  PubMed  Google Scholar 

  73. Darmon, A.J., Ehrman, N., Caputo, A., Fujinaga, J. and Bleackley, R.C. 1994. The cytotoxic T cell proteinase granzyme B does not activate interleukin-1 β-converting enzyme. J. Biol. Chem. 269: 32043–32046.

    CAS  PubMed  Google Scholar 

  74. Kumar, S. 1995. Inhibition of apoptosis by the expression of antisense Nedd2. FEBS Lett. 368: 69–72.

    CAS  PubMed  Google Scholar 

  75. Komiyama, T., Ray, C.A., Pickup, D.J., Howard, A.D., Thornberry, N.A., Peterson, E.P. and Salvesen, G. 1994. Inhibition of interleukin-1β converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J. Biol. Chem. 269: 19331–19337.

    CAS  PubMed  Google Scholar 

  76. Gagliardini, V., Fernandez, P.-A., Lee, R.K.K., Drexier, H.C.A., Rotello, R.J., Fishman, M.C. and Yuan, J. 1994. Prevention of vertebrate neuronal death by the crmA gene. Science 263: 826–828.

    CAS  PubMed  Google Scholar 

  77. Memon, S.A., Moreno, M.B., Petrak, D. and Zacharchuk, C.M. 1995. Bcl-2 blocks glucocorticoid- but not Fas- or activation-induced apoptosis in a T cell hybridoma. J. Immunol. 155: 4644–4652.

    CAS  PubMed  Google Scholar 

  78. Tewari, M. and Dixit, V.M. 1995. Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem. 270: 3255–3260.

    CAS  PubMed  Google Scholar 

  79. Miura, M., Friedlander, R.M. and Yuan, J. 1995. Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc. Natl. Acad. Sci. USA 92: 8318–8322.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tewari, M., Telford, W.G., Miller, R.A. and Dixit, V.M., 1995. CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis. J. Biol. Chem. 270: 22705–22708.

    CAS  PubMed  Google Scholar 

  81. Xue, D. and Horvitz, H.R. 1995. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377: 248–251.

    CAS  PubMed  Google Scholar 

  82. Bump, N.J., Hackett, M., Hugunin, M., Seshagiri, S., Brady, K., Chen, P., Ferenz, C., Franklin, S., Ghayur, T., Li, P., Licari, P., Mankovich, J., Shi, L., Greenberg, A.H., Miller, L.K. and Wong, W.W. 1995. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269: 1885–1888.

    CAS  PubMed  Google Scholar 

  83. Schlegel, J., Peters, I. and Orrenius, S. 1995. Isolation and partial characterization of a protease involved in Fas-induced apoptosis. FEBS Lett. 364: 139–142.

    CAS  PubMed  Google Scholar 

  84. Milligan, C.E., Prevette, D., Yaginuma, H., Homma, S., Cardwell, C., Fritz, L.C., Tomaselli, K.J., Oppenheim, R.W. and Schwartz, L.M. . 1995. Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro . Neuron 15: 385–393.

    CAS  PubMed  Google Scholar 

  85. Zhu, H., Fearnhead, H.O. and Cohen, G.M., 1995. ICE-like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP. 1 cells. FEBS Lett. 374: 303–308.

    CAS  PubMed  Google Scholar 

  86. Fearnhead, H.O., Dinsdale, D. and Cohen, G.M. 1995. An interleukin-1β-converting enzyme-like protease is a common mediator of apoptosis in thymocytes. FEBS Lett. 375: 283–288.

    CAS  PubMed  Google Scholar 

  87. Thornberry, N.A., Miller, D.K. and Nicholson, D.W. 1995. Interleukin-1 B converting enzyme and related proteases as potential targets in inflammation and apoptosis. Perspectives in Drug Discovery and Design 2: 389–399.

    CAS  Google Scholar 

  88. Wilson, K.P., Black, J.-A.R., Thomson, J.A., Kim, E.E., Griffith, J.P., Navia, M.A., Murcko, M.A., Chambers, S.P., Aldape, R.A., Raybuck, S.A. and Livingston, D.J. 1994. Structure and mechanism of interleukin-1β converting enzyme. Nature 370: 270–275.

    CAS  PubMed  Google Scholar 

  89. Walker, N.P.C., Talanian, R.V., Brady, K.D., Dang, L.C., Bump, N.J., Ferenz, C.R., Franklin, S., Ghayur, T., Hackett, M.C., Hammill, L.D., Herzog, L., Hugunin, M., Houy, W., Mankovich, J.A., McGuiness, L., Orlewicz, E., Paskind, M., Pratt, C.A., Reis, P., Summani, A., Terranova, M., Welch, J.P., Xiong, L., Moller, A., Tracey, D.E., Kamen, R. and Wong, W.W. 1994. Crystal structure of the cysteine protease interleukin-1β converting enzyme: A (p20/p10)2 homodimer. Cell 78: 343–352.

    CAS  PubMed  Google Scholar 

  90. Thornberry, N.A. and Molineaux, S.M. 1995. Interleukin-1β converting enzyme: a novel cysteine protease required for IL-1β production and implicated in programmed cell death. Protein Sci. 4: 3–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Thornberry, N.A., Peterson, E.P., Zhao, J.J., Howard, A.D., Griffin, P.R. and Chapman, K.T. 1995. Inactivation of interleukin-1β converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33: 3934–394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, D. ICE/CED3-like Proteases as Therapeutic Targets for the Control of Inappropriate Apoptosis. Nat Biotechnol 14, 297–301 (1996). https://doi.org/10.1038/nbt0396-297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0396-297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing