Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes

Abstract

We reported that complement cascade (CC) becomes activated in bone marrow (BM) during granulocyte colony-stimulating factor (G-CSF) mobilization of hematopoietic stem/progenitor cells (HSPCs) and showed that, although third CC component (C3)-deficient mice are easy mobilizers, fifth CC component (C5)-deficient mice mobilize very poorly. To explain this, we postulated that activation/cleavage of CC releases C3a and C5a anaphylatoxins that differently regulate mobilization. Accordingly, C3a, by enhancing responsiveness of HSPCs to decreasing concentrations of stromal-derived growth factor-1 (SDF-1) in BM, prevents mobilization and promotes their BM retention. Therefore, in this study, we focused on the mobilization-enhancing role of C5a. We found that C5a receptor (C5aR) is not expressed on the surface of HSPCs, and that C5a-mediated promobilization effects are mediated by stimulation of granulocytes. Overall, our data support the following model. First C5aR+ granulocytes are chemoattracted by plasma C5 cleavage fragments, being the first wave of cells leaving BM. This facilitates a subsequent egress of HSPCs. In the next step, after leaving BM, granulocytes undergo degranulation in response to plasma C5a and secrete some cationic peptides (cathelicidin, β-defensin) that, as shown here for the first time, highly enhance the responsiveness of HSPCs to plasma SDF-1 gradient. In conclusion, our data reveal the underappreciated central role of innate immunity in mobilization, in which C5 cleavage fragments through granulocytes orchestrate this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007; 131: 994–1008.

    Article  CAS  Google Scholar 

  2. Welner RS, Kincade PW . Stem cells on patrol. Cell 2007; 131: 842–844.

    Article  CAS  Google Scholar 

  3. Kassirer M, Zeltser D, Gluzman B, Leibovitz E, Goldberg Y, Roth A et al. The appearance of L-selectin(low) polymorphonuclear leukocytes in the circulating pool of peripheral blood during myocardial infarction correlates with neutrophilia and with the size of the infarct. Clin Cardiol 1999; 22: 721–726.

    Article  CAS  Google Scholar 

  4. Kyne L, Hausdorff JM, Knight E, Dukas L, Azhar G, Wei JY . Neutrophilia and congestive heart failure after acute myocardial infarction. Am Heart J 2000; 139: 94–100.

    Article  CAS  Google Scholar 

  5. Matsunaga T, Sakamaki S, Kohgo Y, Ohi S, Hirayama Y, Niitsu Y . Recombinant human granulocyte colony-stimulating factor can mobilize sufficient amounts of peripheral blood stem cells in healthy volunteers for allogeneic transplantation. Bone Marrow Transplant 1993; 11: 103–108.

    CAS  PubMed  Google Scholar 

  6. Sato N, Sawada K, Takahashi TA, Mogi Y, Asano S, Koike T et al. A time course study for optimal harvest of peripheral blood progenitor cells by granulocyte colony-stimulating factor in healthy volunteers. Exp Hematol 1994; 22: 973–978.

    CAS  PubMed  Google Scholar 

  7. Papayannopoulou T, Nakamoto B, Andrews RG, Lyman SD, Lee MY . In vivo effects of Flt3/Flk2 ligand on mobilization of hematopoietic progenitors in primates and potent synergistic enhancement with granulocyte colony-stimulating factor. Blood 1997; 90: 620–629.

    CAS  PubMed  Google Scholar 

  8. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    Article  CAS  Google Scholar 

  9. Lévesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ . Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98: 1289–1297.

    Article  Google Scholar 

  10. Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 2004; 18: 1482–1490.

    Article  CAS  Google Scholar 

  11. Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J . Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)--implications for trafficking of CXCR4+ stem cells. Exp Hematol 2006; 34: 986–995.

    Article  CAS  Google Scholar 

  12. Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J et al. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 2007; 25: 3093–3100.

    Article  CAS  Google Scholar 

  13. Pruijt JF, Verzaal P, van Os R, de Kruijf EJ, van Schie ML, Mantovani A et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 2002; 99: 6228–6233.

    Article  CAS  Google Scholar 

  14. Wu W, Lee H, Wysoczynski M, Kucia M, Ratajczak J, Ratajczak MZ . Novel observation that mice lacking the fifth complement cascade protein component (C5) are very poor stem cell mobilizers explained by defective egress of granulocytes: a novel role for bone marrow granulocytes to act as ‘ice breaker’ cells in facilitating egress of hematopoietic stem/progenitor cells. Blood 2008; 112: 32. Abstract 67.

    Google Scholar 

  15. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24: 801–812.

    Article  CAS  Google Scholar 

  16. Reca R, Mastellos D, Majka M, Marquez L, Ratajczak J, Franchini S et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 2003; 101: 3784–3793.

    Article  CAS  Google Scholar 

  17. Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT et al. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 2004; 103: 2071–2078.

    Article  CAS  Google Scholar 

  18. Wysoczynski M, Reca R, Lee H, Wu W, Ratajczak J, Ratajczak MZ . Defective engraftment of C3aR(−/−) hematopoietic stem progenitor cells shows a novel role of the C3a-C3aR axis in bone marrow homing. [Leukemia 2009; e-pub ahead of print 9 Apr 2009; doi:10.1038/leu.2009.73].

    Article  CAS  Google Scholar 

  19. Molendijk WJ, van Oudenaren A, van Dijk H, Daha MR, Benner R . Complement split product C5a mediates the lipopolysaccharide-induced mobilization of CFU-s and haemopoietic progenitor cells, but not the mobilization induced by proteolytic enzymes. Cell Tissue Kinet 1986; 19: 407–417.

    CAS  PubMed  Google Scholar 

  20. Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  Google Scholar 

  21. Lévesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ . Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 2003; 31: 109–117.

    Article  Google Scholar 

  22. Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, Paemen L et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 1999; 96: 10863–10868.

    Article  CAS  Google Scholar 

  23. King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ et al. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 2001; 97: 1534–1542.

    Article  CAS  Google Scholar 

  24. Velders GA, van Os R, Hagoort H, Verzaal P, Guiot HF, Lindley IJ et al. Reduced stem cell mobilization in mice receiving antibiotic modulation of the intestinal flora: involvement of endotoxins as cofactors in mobilization. Blood 2004; 103: 340–346.

    Article  CAS  Google Scholar 

  25. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 2003; 171: 417–425.

    Article  CAS  Google Scholar 

  26. Beutler BA . TLRs and innate immunity. Blood 2009; 113: 1399–1407.

    Article  CAS  Google Scholar 

  27. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    Article  CAS  Google Scholar 

  28. Mousli M, Hugli TE, Landry Y, Bronner C . A mechanism of action for anaphylatoxin C3a stimulation of mast cells. J Immunol 1992; 148: 2456–2461.

    CAS  PubMed  Google Scholar 

  29. Sitrin RG, Emery SL, Sassanella TM, Blackwood RA, Petty HR . Selective localization of recognition complexes for leukotriene B4 and formyl-Met-Leu-Phe within lipid raft microdomains of human polymorphonuclear neutrophils. J Immunol 2006; 177: 8177–8184.

    Article  CAS  Google Scholar 

  30. Glaspy JA, Shpall EJ, LeMaistre CF, Briddell RA, Menchaca DM, Turner SA et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood 1997; 90: 2939–2951.

    CAS  PubMed  Google Scholar 

  31. Chabannon C, Le Corroller AG, Viret F, Eillen C, Faucher C, Moatti JP et al. Cost-effectiveness of repeated aphereses in poor mobilizers undergoing high-dose chemotherapy and autologous hematopoietic cell transplantation. Leukemia 2003; 17: 811–813.

    Article  CAS  Google Scholar 

  32. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hübel K, Cooper S et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102: 2728–2730.

    Article  CAS  Google Scholar 

  33. Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T . Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 2002; 99: 44–51.

    Article  CAS  Google Scholar 

  34. Cramer DE, Wagner S, Li B, Liu J, Hansen R, Reca R et al. Mobilization of hematopoietic progenitor cells by yeast-derived beta-glucan requires activation of matrix metalloproteinase-9. Stem Cells 2008; 26: 1231–1240.

    Article  CAS  Google Scholar 

  35. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    Article  CAS  Google Scholar 

  36. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276: 43503–43508.

    Article  CAS  Google Scholar 

  37. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020–3027.

    Article  CAS  Google Scholar 

  38. Kollet O, Dar A, Lapidot T . The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 2007; 25: 51–69.

    Article  CAS  Google Scholar 

  39. Winkler IG, Levesque JP . Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 2006; 34: 996–1009.

    Article  CAS  Google Scholar 

  40. van Pel M, van Os R, Velders GA, Hagoort H, Heegaard PM, Lindley IJ et al. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization. Proc Natl Acad Sci USA 2006; 103: 1469–1474.

    Article  CAS  Google Scholar 

  41. Liu F, Poursine-Laurent J, Link DC . Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 2000; 95: 3025–3031.

    CAS  PubMed  Google Scholar 

  42. Zhang M, Austen Jr WG, Chiu I, Alicot EM, Hung R, Ma M et al. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury. Proc Natl Acad Sci USA 2004; 101: 3886–3891.

    Article  CAS  Google Scholar 

  43. Cramer DE, Allendorf DJ, Baran JT, Hansen R, Marroquin J, Li B et al. Beta-glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood 2006; 107: 835–840.

    Article  CAS  Google Scholar 

  44. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 2006; 12: 682–687.

    Article  CAS  Google Scholar 

  45. Ganz T . Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3: 710–720.

    Article  CAS  Google Scholar 

  46. Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 2008; 112: 1461–1471.

    Article  CAS  Google Scholar 

  47. Fukuoka Y, Hugli TE . Anaphylatoxin binding and degradation by rat peritoneal mast cells. Mechanisms of degranulation and control. J Immunol 1990; 145: 1851–1858.

    CAS  PubMed  Google Scholar 

  48. Volanakis JE . Overview of the complement system. In: Volanakis JE, Frank M (eds). The Human Complement System in Health and Disease. Marcel Dekker: New York, NY, 1998, 9–32.

    Chapter  Google Scholar 

  49. Vakeva AP, Agah A, Rollins SA, Matis LA, Li L, Stahl GL . Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation 1998; 97: 2259–2267.

    Article  CAS  Google Scholar 

  50. Pedersen ED, Waje-Andreassen U, Vedeler CA, Aamodt G, Mollnes TE . Systemic complement activation following human acute ischaemic stroke. Clin Exp Immunol 2004; 137: 117–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH Grant R01 CA106281, NIH R01 DK074720 and Stella and Henry Endowment to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Wu, W., Wysoczynski, M. et al. Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 23, 2052–2062 (2009). https://doi.org/10.1038/leu.2009.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.158

Keywords

This article is cited by

Search

Quick links