Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

The enigmatic processing and secretion of interleukin-33

Abstract

Interleukin-33 (IL-33) is the most attractive novel cytokine identified as an IL-1 family member. IL-33 was first named NF-HEV (nuclear factor from high endothelial venules), as it was known to interact with nuclear chromatin although its exact intracellular functions are still to be clarified. IL-33 is now recognized as the specific ligand for the orphan IL-1 receptor family member ST2 and to be involved in polarization of T cells towards T helper 2 cell phenotype and in activation of mast cells, bosophils, eosinophils and natural killer cells. It is essential for IL-33 to be extracellularly released in order to bind to the ST2 receptor and consequently play a crucial role in inflammatory, infectious and autoimmune diseases. However, like the IL-1 family members, IL-1β and IL-18, IL-33 mRNA is translated without a signal sequence for secretion. Additionally, IL-33 cannot be released by the processing and secretion mechanism shared by IL-1β and IL-18 as IL-33 is not a substrate of caspase-1 and does not require proteolysis for activation. In contrast, IL-33 can be inactivated by apoptotic caspases. Accordingly, IL-33 is proposed to be released as an alarmin from necrotic cells but to be deleted during apoptosis. Besides the known autocrine, paracrine, intracrine, juxtacrine and retrocrine mechanisms of cellular interaction with cytokines, release by necrotic cells is another pathway for a cytokine to display its function, which we suggest might be called ‘necrocrine’. This mini review summarizes recent progress of how IL-33 displays potential immunoregulatory roles with a particular focus on its enigmatic production.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baekkevold ES, Roussigné M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol 2003; 163: 69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23: 479–490.

    Article  CAS  PubMed  Google Scholar 

  3. Boraschi D, Tagliabue A . The interleukin-1 receptor family. Vitam Horm 2006; 74: 229–254.

    Article  CAS  PubMed  Google Scholar 

  4. O’Neill LA . The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 2008; 226: 10–18.

    Article  PubMed  Google Scholar 

  5. Kakkar R, Lee RT . The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov 2008; 7: 827–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Löhning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC et al. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci USA 1998; 95: 6930–6935.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meisel C, Bonhagen K, Löhning M, Coyle AJ, Gutierrez-Ramos JC, Radbruch A et al. Regulation and function of T1/ST2 expression on CD4+ T cells: induction of type 2 cytokine production by T1/ST2 cross-linking. J Immunol 2001; 166: 3143–3150.

    Article  CAS  PubMed  Google Scholar 

  8. Gachter T, Werenskiold AK, Klemenz R . Transcription of the interleukin-1 receptor-related T1 gene is initiated at different promoters in mast cells and fibroblasts. J Biol Chem 1996; 271: 124–129.

    Article  CAS  PubMed  Google Scholar 

  9. Moritz DR, Rodewald HR, Gheyselinck J, Klemenz R . The IL-1 receptor-related T1 antigen is expressed on immature and mature mast cells and on fetal blood mast cell progenitors. J Immunol 1998; 161: 4866–4874.

    CAS  PubMed  Google Scholar 

  10. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA 2007; 104: 282–287.

    Article  CAS  PubMed  Google Scholar 

  11. Arend WP, Palmer G, Gabay C . IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 2008; 223: 20–38.

    Article  CAS  PubMed  Google Scholar 

  12. Guo L, Wei G, Zhu J, Liao W, Leonard WJ, Zhao K et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc Natl Acad Sci USA 2009; 106: 13463–13468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Komai-Koma M, Xu D, Li Y, McKenzie AN, McInnes IB, Liew FY . IL-33 is a chemoattractant for human Th2 cells. Eur J Immunol 2007; 37: 2779–2786.

    Article  CAS  PubMed  Google Scholar 

  14. Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE . IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol 2008; 20: 1019–1030.

    Article  CAS  PubMed  Google Scholar 

  15. Allakhverdi Z, Smith DE, Comeau MR, Delespesse G . Cutting edge: the ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J Immunol 2007; 179: 2051–2054.

    Article  CAS  PubMed  Google Scholar 

  16. Moulin D, Donzé O, Talabot-Ayer D, Mézin F, Palmer G, Gabay C . Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine 2007; 40: 216–225.

    Article  CAS  PubMed  Google Scholar 

  17. Ho LH, Ohno T, Oboki K, Kajiwara N, Suto H, Iikura M et al. IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcepsilonRI signals. J Leukoc Biol 2007; 82: 1481–1490.

    Article  CAS  PubMed  Google Scholar 

  18. Iikura M, Suto H, Kajiwara N, Oboki K, Ohno T, Okayama Y et al. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab Invest 2007; 87: 971–978.

    Article  CAS  PubMed  Google Scholar 

  19. Xu D, Jiang HR, Kewin P, Li Y, Mu R, Fraser AR et al. IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc Natl Acad Sci USA 2008; 105: 10913–10918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silver MR, Margulis A, Wood N, Goldman SJ, Kasaian M, Chaudhary D . IL-33 synergizes with IgE-dependent and IgE-independent agents to promote mast cell and basophil activation. Inflamm Res 2010; 59: 207–218.

    Article  CAS  PubMed  Google Scholar 

  21. Suzukawa M, Iikura M, Koketsu R, Nagase H, Tamura C, Komiya A et al. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J Immunol 2008; 181: 5981–5989.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider E, Petit-Bertron AF, Bricard R, Levasseur M, Ramadan A, Girard JP et al. IL-33 activates unprimed murine basophils directly in vitro and induces their in vivo expansion indirectly by promoting hematopoietic growth factor production. J Immunol 2009; 183: 3591–3597.

    Article  CAS  PubMed  Google Scholar 

  23. Kroeger KM, Sullivan BM, Locksley RM . IL-18 and IL-33 elicit Th2 cytokines from basophils via a MyD88- and p38alpha-dependent pathway. J Leukoc Biol 2009; 86: 769–778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pecaric-Petkovic T, Didichenko SA, Kaempfer S, Spiegl N, Dahinden CA . Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood 2009; 113: 1526–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzukawa M, Koketsu R, Iikura M, Nakae S, Matsumoto K, Nagase H et al. Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. Lab Invest 2008; 88: 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  26. Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H . A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 2008; 121: 1484–1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bourgeois E, Van LP, Samson M, Diem S, Barra A, Roga S et al. The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur J Immunol 2009; 39: 1046–1055.

    Article  CAS  PubMed  Google Scholar 

  28. Nakajima H, Takatsu K . Role of cytokines in allergic airway inflammation. Int Arch Allergy Immunol 2007; 142: 265–273.

    Article  CAS  PubMed  Google Scholar 

  29. Hayakawa H, Hayakawa M, Kume A, Tominaga S . Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem 2007; 282: 26369–26380.

    Article  CAS  PubMed  Google Scholar 

  30. Aoki S, Hayakawa M, Ozaki H, Takezako N, Obata H, Ibaraki N et al. ST2 gene expression is proliferation-dependent and its ligand, IL-33, induces inflammatory reaction in endothelial cells. Mol Cell Biochem 2010; 335: 75–81.

    Article  CAS  PubMed  Google Scholar 

  31. Kondo Y, Yoshimoto T, Yasuda K, Futatsugi-Yumikura S, Morimoto M, Hayashi N et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int Immunol 2008; 20: 791–800.

    Article  CAS  PubMed  Google Scholar 

  32. Pushparaj PN, Tay HK, H’ng SC, Pitman N, Xu D, McKenzie A et al. The cytokine interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci USA 2009; 106: 9773–9778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith DE . IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clin Exp Allergy 2010; 40: 200–208.

    Article  CAS  PubMed  Google Scholar 

  34. Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Küchler AM . Interleukin-33 – cytokine of dual function or novel alarmin? Trends Immunol 2009; 30: 227–233.

    Article  CAS  PubMed  Google Scholar 

  35. Préfontaine D, Lajoie-Kadoch S, Foley S, Audusseau S, Olivenstein R, Halayko AJ et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J Immunol 2009; 183: 5094–5103.

    Article  PubMed  Google Scholar 

  36. Kearley J, Buckland KF, Mathie SA, Lloyd CM . Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am J Respir Crit Care Med 2009; 179: 772–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manetti M, Ibba-Manneschi L, Liakouli V, Guiducci S, Milia AF, Benelli G et al. The IL-1-like cytokine IL-33 and its receptor ST2 are abnormally expressed in the affected skin and visceral organs of patients with systemic sclerosis. Ann Rheum Dis 2010; in press.

  38. Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N et al. IL-33 reduces the development of atherosclerosis. J Exp Med 2008; 205: 339–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dinarello CA . An IL-1 family member requires caspase-1 processing and signals through the ST2 receptor. Immunity 2005; 23: 461–462.

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Willingham SB, Ting JP, Re F . Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J Immunol 2008; 181: 17–21.

    Article  CAS  PubMed  Google Scholar 

  41. Cassel SL, Joly S, Sutterwala FS . The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol 2009; 21: 194–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lüthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 2009; 31: 84–98.

    Article  PubMed  Google Scholar 

  43. Lamkanfi M, Dixit VM . IL-33 raises alarm. Immunity 2009; 31: 5–7.

    Article  CAS  PubMed  Google Scholar 

  44. Cayrol C, Girard JP . The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci USA 2009; 106: 9021–9026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Talabot-Ayer D, Lamacchia C, Gabay C, Palmer G . Interleukin-33 is biologically active independently of caspase-1 cleavage. J Biol Chem 2009; 284: 19420–19426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohno T, Oboki K, Kajiwara N, Morii E, Aozasa K, Flavell RA et al. Caspase-1, caspase-8, and calpain are dispensable for IL-33 release by macrophages. J Immunol 2009; 183: 7890–7897.

    Article  CAS  PubMed  Google Scholar 

  47. Keller M, Rüegg A, Werner S, Beer HD . Active caspase-1 is a regulator of unconventional protein secretion. Cell 2008; 132: 818–831.

    Article  CAS  PubMed  Google Scholar 

  48. Creagh EM, Conroy H, Martin SJ . Caspase-activation pathways in apoptosis and immunity. Immunol Rev 2003; 193: 10–21.

    Article  CAS  PubMed  Google Scholar 

  49. Hayakawa M, Hayakawa H, Matsuyama Y, Tamemoto H, Okazaki H, Tominaga S . Mature interleukin-33 is produced by calpain-mediated cleavage in vivo. Biochem Biophys Res Commun 2009; 387: 218–222.

    Article  CAS  PubMed  Google Scholar 

  50. Maier JA, Voulalas P, Roeder D, Maciag T . Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 1990; 249: 1570–1574.

    Article  CAS  PubMed  Google Scholar 

  51. Maier JA, Statuto M, Ragnotti G . Endogenous interleukin 1 alpha must be transported to the nucleus to exert its activity in human endothelial cells. Mol Cell Biol 1994; 14: 1845–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mosley B, Urdal DL, Prickett KS, Larsen A, Cosman D, Conlon PJ et al. The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. J Biol Chem 1987; 262: 2941–2944.

    CAS  PubMed  Google Scholar 

  53. Kobayashi Y, Yamamoto K, Saido T, Kawasaki H, Oppenheim JJ, Matsushima K . Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1 alpha. Proc Natl Acad Sci USA 1990; 87: 5548–5552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carruth LM, Demczuk S, Mizel SB . Involvement of a calpain-like protease in the processing of the murine interleukin 1 alpha precursor. J Biol Chem 1991; 266: 12162–12167.

    CAS  PubMed  Google Scholar 

  55. Kavita U, Mizel SB . Differential sensitivity of interleukin-1 alpha and -beta precursor proteins to cleavage by calpain, a calcium-dependent protease. J Biol Chem 1995; 270: 27758–27765.

    Article  CAS  PubMed  Google Scholar 

  56. Eigenbrod T, Park JH, Harder J, Iwakura Y, Núñez G . Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol 2008; 181: 8194–8198.

    Article  CAS  PubMed  Google Scholar 

  57. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008; 14: 156–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakashita M, Yoshimoto T, Hirota T, Harada M, Okubo K, Osawa Y et al. Association of serum interleukin-33 level and the interleukin-33 genetic variant with Japanese cedar pollinosis. Clin Exp Allergy 2008; 38: 1875–1881.

    Article  CAS  PubMed  Google Scholar 

  59. Matsuyama Y, Okazaki H, Tamemoto H, Kimura H, Kamata Y, Nagatani K et al. Increased levels of interleukin 33 in sera and synovial fluid from patients with active rheumatoid arthritis. J Rheumatol 2010; 37: 18–25.

    Article  CAS  PubMed  Google Scholar 

  60. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT . IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007; 117: 1538–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, Massa PT . Induction of IL-33 expression and activity in central nervous system glia. J Leukoc Biol 2008; 84: 631–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Küchler AM, Pollheimer J, Balogh J, Sponheim J, Manley L, Sorensen DR et al. Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation. Am J Pathol 2008; 173: 1229–1242.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moussion C, Ortega N, Girard JP . The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One 2008; 3: e3331.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wood IS, Wang B, Trayhurn P . IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes. Biochem Biophys Res Commun 2009; 384: 105–109.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Hu, Z. The enigmatic processing and secretion of interleukin-33. Cell Mol Immunol 7, 260–262 (2010). https://doi.org/10.1038/cmi.2010.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.3

Keywords

This article is cited by

Search

Quick links