Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cellular neurobiology of depression

Abstract

Major depressive disorders, long considered to be of neurochemical origin, have recently been associated with impairments in signaling pathways that regulate neuroplasticity and cell survival. Agents designed to directly target molecules in these pathways may hold promise as new therapeutics for depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomical circuits implicated by neuroimaging and neuropathological studies of familial mood disorders.
Figure 2: Neuroplasticity and cellular resilience in mood disorders.

Similar content being viewed by others

References

  1. Musselman, D.L., Evans, D.L. & Nemeroff, C.B. The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch. Gen. Psychiatry 55, 580–592 (1998).

    Article  CAS  Google Scholar 

  2. Schulz, R. et al. Association between depression and mortality in older adults: the Cardiovascular Health Study. Arch. Intern. Med. 160, 1761–1768 (2000).

    Article  CAS  Google Scholar 

  3. Michelson, D. et al. Bone mineral density in women with depression. N. Engl. J. Med. 335, 1176–1181 (1996).

    Article  CAS  Google Scholar 

  4. Ciechanowski, P.S., Katon, W.J. & Russo, J.E. Depression and diabetes: impact of depressive symptoms on adherence, function, and costs. Arch. Intern. Med. 160, 3278–3285 (2000).

    Article  CAS  Google Scholar 

  5. Murray, C.J. & Lopez, A.D. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349, 1436–1442 (1997).

    Article  CAS  Google Scholar 

  6. Schatzberg, A.F. & Schildkraut, J.J. Recent studies on norepinephrine systems in mood disorders. in Psychopharmacology: The Fourth Generation of Progress. (eds. Bloom, F.E. & Kupfer, D.J.) 911–920 (Raven, New York, 1995).

    Google Scholar 

  7. Maes, M. & Meltzer, H.Y. The serotonergic hypothesis of depression. in Psychopharmacology: The Fourth Generation of Progress. (eds. Bloom, F.E. & Kupfer, D.J.) 921–932 (Raven, New York, 1995).

    Google Scholar 

  8. Willner, P. Dopaminergic mechanisms in depression and mania. in Psychopharmacology: The Fourth Generation of Progress. (eds. Bloom, F.E. & Kupfer, D.J.) 921–932 (Raven, New York, 1995).

    Google Scholar 

  9. Janowsky, D.S. & Overstreet, D.H. The role of acetylcholine mechanisms in mood disorders. in Psychopharmacology: The Fourth Generation of Progress. (eds. Bloom, F.E. & Kupfer, D.J.) 945–956 (Raven, New York, 1995).

    Google Scholar 

  10. Garlow, S.J., Musselman, D.L. & Nemeroff C.B. The Neurochemistry of Mood Disorders clinical studies. in Neurobiology of Mental Illness. (eds. Charney, D.S., Nester, E.J. & Bunney, B.S.) 348–364 (Oxford Press, New York, 1999).

    Google Scholar 

  11. Drevets, W.C. Neuroimaging studies of mood disorders: Implications for a neural model of major depression. Biol. Psychiatry 48, 813–829 (2000).

    Article  CAS  Google Scholar 

  12. Graybiel, A.M. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 13, 244–254 (1990).

    Article  CAS  Google Scholar 

  13. Drevets, W.C., Gadde, K. & Krishnan, R. Neuroimaging studies of depression. in Neurobiology of Mental Illness. (eds. Charney, D.S., Nester, E.J. & Bunney, B.S.) 394–418 (Oxford Press, New York, 1999).

    Google Scholar 

  14. Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23, 477–501 (2000).

    Article  CAS  Google Scholar 

  15. Owens, M.J. & Nemeroff, C.B. Corticotropin-releasing factor antagonists in affective disorders. Expert. Opin. Investig. Drugs 8, 1849–1858 (1999).

    Article  CAS  Google Scholar 

  16. Charney, D.S. Monoamine dysfunction and the pathophysiology and treatment of depression. J. Clin. Psychiatry 59, 11–14 (1998).

    CAS  Google Scholar 

  17. Manji, H.K. & Lenox, R.H. Signaling: Cellular insights into the pathophysiology of bipolar disorder. Biol. Psych. 48, 518–530 (2000).

    Article  CAS  Google Scholar 

  18. Manji, H.K., Moore, G.J., Rajkowska, G. & Chen, G. Neuroplasticity and cellular resilience in mood disorders. Millennium article. Mol. Psychiatry 5, 578–593 (2000).

    Article  CAS  Google Scholar 

  19. Bourne, H.R. & Nicoll, R. Molecular machines integrate coincident synaptic signals. Cell 72, 65–75 (1993).

    Article  Google Scholar 

  20. Bhalla, U.S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  CAS  Google Scholar 

  21. LeDoux, J.E. Emotion. in Handbook of Physiology—The Nervous System, Vol. V. (eds. Mills, J., Mountcastle, V.B., Plum, F. & Geiger, S.R.) 373–417 (Williams & Wilkins, Baltimore, 1987).

    Google Scholar 

  22. Rajkowska, G. et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry 45, 1085–1098 (1999).

    Article  CAS  Google Scholar 

  23. Rajkowska, G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol. Psychiatry 48, 766–777 (2000).

    Article  CAS  Google Scholar 

  24. Öngür, D., Drevets, W.C. & Price J.L. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc. Nat. Acad. Sci. USA 95, 13290–13295 (1998).

    Article  Google Scholar 

  25. Coyle, J.T. & Schwarcz, R. Mind glue: implications of glial cell biology for psychiatry. Arch. Gen. Psychiatry 57, 90–93 (2000).

    Article  CAS  Google Scholar 

  26. Ullian, E.K., Sapperstein, S.K., Christopherson, K.S. & Barres, B.A. Control of synapse number by glia. Science 291, 657–660 (2001).

    Article  CAS  Google Scholar 

  27. Drevets, W. Neuroimaging and neuropathological studies of depression: Implications for the cognitive emotional manifestations of mood disorders. Curr. Op. Neurobiol. 11, 240–249 (2001).

    Article  CAS  Google Scholar 

  28. Folstein, S.E., Peyser, C.E., Starkstein, S.E. & Folstein, M.F. Subcortical triad of Huntington's Disease; a model for a neuropathology of depression, dementia, and dyskinesia. in Psychopathology and the Brain. (ed. Carroll, B.J.) 65–75 (Raven, New York, 1991).

  29. Starkstein, S.E. & Robinson, R.G. Affective disorders and cerebral vascular disease. Brit. J. Psychiatry 154, 170–182 (1989).

    Article  CAS  Google Scholar 

  30. Starkstein, S.E. & Robinson, R.G. Mood disorders in neurodegenerative diseases. Semin. Clin. Neuropsychiatry 4, 272–281 (1996).

    Google Scholar 

  31. Kessler, R.C. The effects of stressful life events on depression. Annu. Rev. Psychol. 148, 191–214 (1997).

    Article  Google Scholar 

  32. McEwen, B.S. Stress and hippocampal plasticity. Ann. Rev. Neurosci. 22, 105–122 (1999).

    Article  CAS  Google Scholar 

  33. Sapolsky, R.M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry 57, 925–935 (2000).

    Article  CAS  Google Scholar 

  34. Brown, E.S., Rush, A.J. & McEwen, B.S. Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 21, 474–484 (1999).

    Article  CAS  Google Scholar 

  35. Sonino, N. & Fava, G.A. Psychosomatic aspects of Cushing's disease. Psychother. Psychosom. 67, 140–146 (1998).

    Article  CAS  Google Scholar 

  36. Starkman, M.N. et al. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's disease. Biol. Psychiatry 46, 1595–1602 (1999).

    Article  CAS  Google Scholar 

  37. Steffens, D.C., Tupler, L.A. & Krishnan, R. Magnetic resonance imaging signal hypointensity and iron content of putamen nuclei in elderly depressed patients. Psychiatry Res. 83, 95–103 (1998).

    Article  CAS  Google Scholar 

  38. Black, I.B. Trophic regulation of synaptic plasticity. J. Neurobiol. 41, 108–118 (1999).

    Article  CAS  Google Scholar 

  39. Riccio, A., Ahn, S., Davenport, C.M., Blendy, J.A. & Ginty, D.D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).

    Article  CAS  Google Scholar 

  40. Bonni, A., Brunet, A., West, A.E., Datta, S.R. & Takasu, M.A. Greenberg ME . Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  Google Scholar 

  41. Finkbeiner, S. CREB couples neurotrophin signals to survival messages. Neuron 25, 11–14 (2000).

    Article  CAS  Google Scholar 

  42. Adams, J.M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–13226 (1998).

    Article  CAS  Google Scholar 

  43. Chen, D.F., Schneider, G.E., Martinou, J.C. & Tonegawa, S. Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 385, 434–439 (1997).

    Article  CAS  Google Scholar 

  44. Eriksson, P.S. et al. Neurogenesis in the adult human hippocampus. Nature Med. 4, 1313–1317 (1998).

    Article  CAS  Google Scholar 

  45. Duman, R.S., Malberg, J., Nakagawa, S. & D'Sa, C. Neuronal plasticity and survival in mood disorders. Biol. Psychiatry 48, 732–739 (2000).

    Article  CAS  Google Scholar 

  46. Gould, E., Tanapat, P., Rydel, T. & Hastings, N. Regulation of hippocampal neurogenesis in adulthood. Biol. Psychiatry 48, 715–720 (2000).

    Article  CAS  Google Scholar 

  47. Jacobs, B.L., Praag, H. & Gage, F.H. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry. 5, 262–269 (2000).

    Article  CAS  Google Scholar 

  48. Gould, E., Reeves, A.J., Graziano, M.S. & Gross, C.G. Neurogenesis in the neocortex of adult primates. Science 286, 548–552 (1999).

    Article  CAS  Google Scholar 

  49. Graham, Y.P., Heim, C., Goodman, S.H., Miller, A.H. & Nemeroff, C.B. The effects of neonatal stress on brain development: Implications for psychopathology. Dev. Psychopathol. 11, 545–565 (1999).

    Article  CAS  Google Scholar 

  50. Heim, C. & Nemeroff, C.B. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol. Psychiatry 46, 1509–1522 (1999).

    Article  CAS  Google Scholar 

  51. Francis, D., Diorio, J., Liu, D. & Meaney, M.J. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286, 1155–1158 (1999).

    Article  CAS  Google Scholar 

  52. Duman, R.S., Heninger, G.R. & Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry. 54, 597–606 (1997).

    Article  CAS  Google Scholar 

  53. Malberg, J.E., Eisch, A.J., Nestler, E.J. & Duman, R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9410 (2000).

    Article  CAS  Google Scholar 

  54. Manji, H.K. et al. Regulation of signal transduction pathways by mood stabilizing agents: Implications for the pathophysiology and treatment of bipolar affective disorder. in Bipolar Medications: Mechanisms of Action. (eds. Manji, H.K., Bowden, C.L. & Belmaker, R.H.) 129–177 (American Psychiatric Press, Washington, DC, 2000).

    Google Scholar 

  55. Petrie, R.X., Reid, I.C. & Stewart, C.A. The N-methyl-d-aspartate receptor, synaptic plasticity, and depressive disorder. A critical review. Pharmacol. Ther. 87, 11–25 (2000).

    Article  CAS  Google Scholar 

  56. Chen, G. et al. The mood stabilizing agents lithium and valproate robustly increase the expression of the neuroprotective protein bcl-2 in the CNS. J. Neurochem. 72, 879–882 (1999).

    Article  CAS  Google Scholar 

  57. Chen, R.W. & Chuang. D.M. Long term lithium treatment suppresses p53 and Bax expression but increases bcl-2 expression. J. Biol. Chem. 274, 6039–6042 (1999).

    Article  CAS  Google Scholar 

  58. Klein, P.S. & Melton, D,A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459 (1996).

    Article  CAS  Google Scholar 

  59. Chen, G., Rajkowska, G., Du, F., Seraji-Bozorgzad, N. & Manji, H.K. Enhancement of hippocampal neurogenesis by lithium. J. Neurochem. 75, 1729–1734 (2000).

    Article  CAS  Google Scholar 

  60. Tsai, G. & Coyle, J.T. N-acetylaspartate in neuropsychiatric Disorders. Prog. Neuroiology 46, 531–540 (1995).

    Article  CAS  Google Scholar 

  61. Bates, T.E. et al. Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 7, 1397–1400 (1996).

    Article  CAS  Google Scholar 

  62. Moore, G.J. et al. Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2's neurotrophic effects? Biol. Psychiatry 48, 1–8 (2000).

    Article  CAS  Google Scholar 

  63. Moore, G.J., Bebchuk, J.M., Wilds, I.B., Chen, G. & Manji, H.K. Lithium-induced increase in human brain gray matter. Lancet 356, 1241–1242 (2000).

    Article  CAS  Google Scholar 

  64. Calabrese, J.R. et al. Spectrum of activity of lamotrigine in treatment-refractory bipolar disorder. Am. J. Psychiatry 156, 1019–1023 (1999).

    CAS  Google Scholar 

  65. Berman, R.M. et al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354 (2000).

    Article  CAS  Google Scholar 

  66. Wolkowitz, O.M. & Reus, V.I. Treatment of depression with antiglucocorticoid drugs. Psychosom. Med. 61, 698–711 (1999).

    Article  CAS  Google Scholar 

  67. Nestler, E.J. Antidepressant treatments in the 21st century. Biol. Psychiatry 44, 526–533 (1998).

    Article  CAS  Google Scholar 

  68. Guo, Z., Zhou, D. & Schultz, P.G. Designing small-molecule switches for protein–protein interactions. Science 288, 2042–2045 (2000).

    Article  CAS  Google Scholar 

  69. Mesulam, M.M. Neuroplasticity failure in Alzheimer's disease: Bridging the gap between plaques and tangles. Neuron 24, 521–529 (1999).

    Article  CAS  Google Scholar 

  70. Sweatt, J.D. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 76, 1–10 (2001).

    Article  CAS  Google Scholar 

  71. Sanacora, G. et al. Reduced cortical γ-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry 56, 1043–1047 (1999).

    Article  CAS  Google Scholar 

  72. Lambert, G., Johansson, M., Agren, H. & Friberg, P. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch. Gen. Psychiatry 57, 787–793 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.S. Duman for valuable comments and input; G. Rajkowska for help in generating Table 2; and C. Knobelsdorf for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husseini K. Manji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manji, H., Drevets, W. & Charney, D. The cellular neurobiology of depression. Nat Med 7, 541–547 (2001). https://doi.org/10.1038/87865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/87865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing