Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Changing the dosing schedule minimizes the disruptive effects of interferon on clock function

Abstract

The effectiveness and toxicity of many drugs vary depending on the relationship between the dosing schedule and the 24-hour rhythms of biochemical, physiological and behavioral processes. In addition, several drugs can cause alterations to the 24-hour rhythms leading to illness and altered homeostatic regulation. However, the mechanisms of this drug-based disruption of circadian 'clock' genes remain unclear. Here, we show the disruptive effect of interferon-α on the rhythm of locomotor activity, body temperature and clock-gene mRNA expression in the periphery and suprachiasmatic nuclei, a primary circadian pacemaker. The rhythmicity of clock genes and the photic induction of the Per gene in suprachiasmatic nuclei were disturbed by the repetitive administration of interferon-α. Moreover, alteration of clock function, a new concept of adverse effects, can be overcome by optimizing the dosing schedule to minimize adverse drug effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of IFN-α or IFN-γ dosing schedule on mRNA expression of clock genes in the SCN.
Figure 2: Photic induction of Per mRNA expression in SCN of mice on day 7 after a single dose of IFN-α (2 MIU/kg, SC) at ZT0 () or ZT12 (□), or saline (□) daily for 6 days.
Figure 3: 24-hour rhythm of RNA levels for Per in a, adrenal glands or b, liver in mice after a single dose of IFN-α (2 MIU/kg, SC) at ZT0 (▪) or ZT12 (), or saline () daily for 6 days.
Figure 4: 24-hour rhythm of locomotor activity or body temperature.
Figure 5: Interferon stimulated gene factor-3 (ISGF) in the SCN of mice continuously administered IFN-α (14 kIU/h, SC) or saline for 6 days using osmotic minipumps.
Figure 6: 24 hour rhythm of locomotor activity or Per mRNA levels in the SCN.

Similar content being viewed by others

References

  1. Moore, R.Y. & Eichler, V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Shigeyoshi, Y. et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91, 1043–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kalsbeek, A., van Heerikhuize, J.J., Wortel, J. & Buijs, R.M. A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J. Neurosci. 16, 5555–5565 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tei, H. et al. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512–516 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Zylka, M.J., Shearman, L.P., Weaver, D.R. & Reppert, S.M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Ripperger, J.A., Shearman, L.P., Reppert, S.M. & Schibler, U. Clock, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 14, 679–689 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Halberg, F. Chronobiology. Annu. Rev. Physiol. 31, 675–725 (1969).

    Article  CAS  PubMed  Google Scholar 

  10. Reinberg, A. & Halberg, F. Circadian chronopharmacology. Annu. Rev. Pharmacol. 11, 455–492 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Lemmer, B., Scheidel, B. & Behne, S. Chronopharmacokinetics and chronopharmacodynamics of cardiovascular active drugs: propranolol, organic nitrates, nifedipine. Ann. NY Acad. Sci. 618, 166–181 (1991).

    Article  PubMed  Google Scholar 

  12. Labrecque, G. & Belanger, P.M. Biological rhythms in the absorption, distribution, metabolism and excretion of drugs. Pharmacol. Ther. 52, 95–107 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Duncan, W.C. Circadian rhythms and the pharmacology of affective illness. Pharmacol. Ther. 71, 253–312 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Akiyama, M. et al. Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J. Neurosci. 19, 1115–1121 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horikawa, K. et al. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J. Neurosci. 20, 5867–5873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fattovich, G. et al. A survey of adverse events in 11241 patients with chronic viral hepatitis treated with alfa interferon. J. Hepatol. 24, 38–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Jansenn, H.L.A., Brouwer, J.T., Mast, R.C. & Schalm, S.W. Suicide associated with alfa-interferon therapy for chronic viral hepatitis. J. Hepatol. 21, 241–243 (1994).

    Article  Google Scholar 

  18. Koyanagi, S., Ohdo, S., Yukawa, E. & Higuchi, S. Chronopharmacological study of interferon-α in mice. J. Pharmacol. Exp. Ther. 283, 259–264 (1997).

    CAS  PubMed  Google Scholar 

  19. Roosth, J., Pollard, R.B., Brown, S.L. & Meyer, W.J. Cortisol stimulation by recombinant interferon-α2. J. Neuroimmunol. 12, 311–316 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Koren, S., Whorton, E.B. & Fleischmann, W.R. Circadian dependence of interferon antitumor activity in mice. J. Natl. Cancer Inst. 85, 1927–1932 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, R. & Korutla, L. Induction of expression of interferon-stimulated gene factor-3 (ISGF-3) proteins by interferons. Exp. Cell Res. 216, 143–148 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi, J.S. Molecular neurobiology and genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 18, 531–553 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Lohmann, C.P. et al. Severe loss of vision during adjuvant interferon alfa-2b treatment for malignant melanoma. Lancet 353, 1326 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Purvin, V.A. Anterior ischemic optic neuropathy secondary to interferon-α. Arch. Ophthalmol. 113, 1041–1044 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Nagayama, H., Takagi, A. & Takahashi, R. Circadian fluctuation of susceptibility to haloperidol under constant conditions. Experientia 43, 625–626 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Lu, J.Q. & Nagayama, H. Circadian rhythm in the function of central 5-HT1A receptors is endogenous in nature. Cell. Mol. Life Sci. 53, 224–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Ohdo, S., Ogawa, N., Nakano, S. & Higuchi, S. Influence of feeding schedule on the chronopharmacological aspects of sodium valproate in mice. J. Pharmacol. Exp. Ther. 278, 74–81 (1996).

    CAS  PubMed  Google Scholar 

  29. Jones, C.R. et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nature Med. 5, 1062–1065 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic neucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boulos, Z. & Terman, M. Food availability and daily biological rhythms. Neurosci. Biobehav. Rev. 4, 119–131 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Ueyama, T. et al. Suprachiasmatic nucleus: a central autonomic clock. Nature Neurosci. 2, 1051–1053 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Silver, R., LeSauter, J., Tresco, P.A. & Lehman, M.N. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382, 810–813 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Takane, H. et al. Chronopharmacology of antitumor effect induced by interferon-β in tumor-bearing mice. J. Pharmacol. Exp. Ther. 294, 746–752 (2000).

    CAS  PubMed  Google Scholar 

  35. Ohdo, S. et al. Basis for dosing time-dependent changes in the antiviral activity of interferon-α in mice. J. Pharmacol. Exp. Ther. 294, 488–493 (2000).

    CAS  PubMed  Google Scholar 

  36. Hunter, C.A. et al. Type I interferons enhance production of IFN-γ by NK cells. Immunol. Lett. 59, 1–5 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Branca, A.A. & Baglioni, C. Evidence that types I and II interferons have different receptors. Nature 294, 768–770 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Lundkvist, G.B. et al. Expression of an oscillating interferon-γ receptor in the suprachiasmatic nuclei. Neuroreport 9, 1059–1063 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Iacobelli, S. et al. A phase I study of recombinant interferon-α administered as a seven-day continuous venous infusion at circadian-rhythm modulated rate in patients with cancer. Am. J. Clin. Oncol. 18, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Bocci, V. Administration of interferon at night may increase its therapeutic index. Cancer Drug Deliv. 2, 313–318 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science, Sports and Culture, Japan (S.O., 00223884), a Grant-in-Aid from the Tokyo Biochemical Research Foundation (S.O.), a Grant-in-Aid from the Nakatomi Foundation (S.O.) and a Grant-in-Aid from Japan Research Foundation for Clinical Pharmacology (S.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehiro Ohdo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohdo, S., Koyanagi, S., Suyama, H. et al. Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nat Med 7, 356–360 (2001). https://doi.org/10.1038/85507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing