Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic variation in gene expression patterns in human cancer cell lines

Abstract

We used cDNA microarrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute's screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumours from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumour specimens revealed features of the expression patterns in the tumours that had recognizable counterparts in specific cell lines, reflecting the tumour, stromal and inflammatory components of the tumour tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumours in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene expression patterns related to the tissue of origin of the cell lines.
Figure 2: Gene expression patterns related to other cell-line phenotypes.
Figure 3: Gene clusters related to tissue characteristics in the cell lines.
Figure 4: Comparison of the gene expression patterns in clinical breast cancer specimens and cultured breast cancer and leukaemia cell lines.
Figure 5: Histologic features of breast cancer biopsies can be recognized and parsed based on gene expression patterns.

Similar content being viewed by others

References

  1. Stinson, S.F. et al. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res. 12, 1035–1053 (1992).

    CAS  PubMed  Google Scholar 

  2. Myers, T.G. et al. A protein expression database for the molecular pharmacology of cancer. Electrophoresis 18, 647– 653 (1997).

    Article  CAS  Google Scholar 

  3. Weinstein, J.N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343– 349 (1997).

    Article  CAS  Google Scholar 

  4. Monks, A., Scudiero, D.A., Johnson, G.S., Paull, K.D. & Sausville, E.A. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anticancer Drug Des. 12, 533–541 ( 1997).

    CAS  PubMed  Google Scholar 

  5. Paull, K.D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl Cancer Inst. 81, 1088 –1092 (1989).

    Article  CAS  Google Scholar 

  6. Weinstein, J.N. et al. Neural computing in cancer drug development: predicting mechanism of action. Science 258, 447– 451 (1992).

    Article  CAS  Google Scholar 

  7. van Osdol, W.W., Myers, T.G., Paull, K.D., Kohn, K.W. & Weinstein, J.N. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J. Natl Cancer Inst. 86, 1853–1859 ( 1994).

    Article  CAS  Google Scholar 

  8. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680– 686 (1997).

    Article  CAS  Google Scholar 

  9. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83– 87 (1999).

    Article  CAS  Google Scholar 

  10. Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21 ( suppl.), 33–37 (1999).

    Article  CAS  Google Scholar 

  11. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236– 244 (2000).

    Article  CAS  Google Scholar 

  12. Khan, J. et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 58, 5009– 5013 (1998).

    CAS  PubMed  Google Scholar 

  13. Der, S.D., Zhou, A., Williams, B.R. & Silverman, R.H. Identification of genes differentially regulated by interferon-α, -β or -γ or using oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 15623 –15628 (1998).

    Article  CAS  Google Scholar 

  14. Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA 96, 6745– 6750 (1999).

    Article  CAS  Google Scholar 

  15. Wang, K. et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene 229, 101– 108 (1999).

    Article  CAS  Google Scholar 

  16. Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA 96, 2907– 2912 (1999).

    Article  CAS  Google Scholar 

  17. Shalon, D., Smith, S.J. & Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 6, 639–645 (1996).

    Article  CAS  Google Scholar 

  18. Eisen, M.B. & Brown, P.O. DNA arrays for analysis of gene expression . Methods Enzymol. 303, 179– 205 (1999).

    Article  CAS  Google Scholar 

  19. Sokal, R.R. & Sneath, P.H.A. Principles of Numerical Taxonomy (W.H. Freeman, San Francisco, 1963).

    Google Scholar 

  20. Hartigan, J.A. Clustering Algorithms (Wiley, New York, 1975).

    Google Scholar 

  21. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).

    Article  CAS  Google Scholar 

  22. del Marmol, V. & Beermann, F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381, 165–168 (1996).

    Article  CAS  Google Scholar 

  23. Kawakami, Y. et al. The use of melanosomal proteins in the immunotherapy of melanoma . J. Immunother. 21, 237– 246 (1998).

    Article  CAS  Google Scholar 

  24. Cailleau, R., Olive, M. & Cruciger, Q.V. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14, 911–915 (1978).

    Article  CAS  Google Scholar 

  25. Brinkley, B.R. et al. Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Res. 40, 3118– 3129 (1980).

    CAS  PubMed  Google Scholar 

  26. Nesland, J.M., Holm, R., Johannessen, J.V. & Gould, V.E. Neuroendocrine differentiation in breast lesions. Pathol. Res. Pract. 183, 214–221 ( 1988).

    Article  CAS  Google Scholar 

  27. Davies, J.A. & Garrod, D.R. Molecular aspects of the epithelial phenotype. Bioessays 19, 699– 704 (1997).

    Article  CAS  Google Scholar 

  28. Garrod, D., Chidgey, M. & North, A. Desmosomes: differentiation, development, dynamics and disease. Curr. Opin. Cell Biol. 8, 670– 678 (1996).

    Article  CAS  Google Scholar 

  29. Cowin, P. & Burke, B. Cytoskeleton-membrane interactions . Curr. Opin. Cell Biol. 8, 56– 65 (1996); erratum: 8, 244 (1996).

    Article  CAS  Google Scholar 

  30. Litvinov, S.V. et al. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins. J. Cell Biol. 139, 1337–1348 (1997).

    Article  CAS  Google Scholar 

  31. Helmle-Kolb, C. et al. Na/H exchange activities in NHE1-transfected OK-cells: cell polarity and regulation. Pflugers Arch. 425, 34–40 (1993); erratum: 427 , 387 (1994).

    Article  CAS  Google Scholar 

  32. Manfruelli, P., Arquier, N., Hanratty, W.P. & Semeriva, M. The tumor suppressor gene, lethal(2)giant larvae (1(2)g1), is required for cell shape change of epithelial cells during Drosophila development. Development 122, 2283–2294 (1996).

    CAS  PubMed  Google Scholar 

  33. Lincecum, J.M., Fannon, A., Song, K., Wang, Y. & Sassoon, D.A. Msh homeobox genes regulate cadherin-mediated cell adhesion and cell-cell sorting. J. Cell Biochem. 70, 22–28 (1998).

    Article  CAS  Google Scholar 

  34. Hackett, A.J. et al. Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J. Natl Cancer Inst. 58, 1795– 1806 (1977).

    Article  CAS  Google Scholar 

  35. Rutka, J.T. et al. Establishment and characterization of a cell line from a human gliosarcoma. Cancer Res. 46, 5893– 5902 (1986).

    CAS  PubMed  Google Scholar 

  36. Nguyen, H., Hiscott, J. & Pitha, P.M. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev. 8, 293– 312 (1997).

    Article  CAS  Google Scholar 

  37. Moscow, J.A., Schneider, E., Ivy, S.P. & Cowan, K.H. Multidrug resistance. Cancer Chemother. Biol. Response Modif. 17, 139– 177 (1997).

    CAS  PubMed  Google Scholar 

  38. Smith, H.S. & Hackett, A.J. The use of cultured human mammary epithelial cells in defining malignant progression. Ann. N Y Acad. Sci. 464, 288–300 ( 1986).

    Article  CAS  Google Scholar 

  39. Rutka, J.T. et al. Establishment and characterization of five cell lines derived from human malignant gliomas. Acta Neuropathol. 75, 92–103 (1987).

    Article  CAS  Google Scholar 

  40. Ronnov-Jessen, L., Petersen, O.W. & Bissell, M.J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol. Rev. 76, 69–125 ( 1996).

    Article  CAS  Google Scholar 

  41. Perou, C.M et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl Acad. Sci. USA 96, 9212–9217 (1999).

    Article  CAS  Google Scholar 

  42. Bonner, R.F. et al. Laser capture microdissection: molecular analysis of tissue . Science 278, 1481–1483 (1997).

    Article  CAS  Google Scholar 

  43. Sgroi, D.C. et al. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 59, 5656– 5661 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Brown and Botstein labs for helpful discussions. This work was supported by the Howard Hughes Medical Institute and a grant from the National Cancer Institute (CA 077097). The work of U.S. and J.N.W. was supported in part by a grant from the National Cancer Institute Breast Cancer Think Tank. D.T.R is a Walter and Idun Berry Fellow. M.B.E. is an Alfred P. Sloan Foundation Fellow in Computational Molecular Biology. C.M.P. is a SmithKline Beecham Pharmaceuticals Fellow of the Life Science Research Foundation. P.O.B. is an Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John N. Weinstein or Patrick O. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, D., Scherf, U., Eisen, M. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24, 227–235 (2000). https://doi.org/10.1038/73432

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing