Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retention of heroin and morphine–6β–glucuronide analgesia in a new line of mice lacking exon 1 of MOR–1

Abstract

Morphine produces analgesia by activating mu opioid receptors encoded by the MOR–1 gene. Although morphine–6β–glucuronide (M6G), heroin and 6–acetylmorphine also are considered mu opioids, recent evidence suggests that they act through a distinct receptor mechanism. We examined this question in knockout mice containing disruptions of either the first or second coding exon of MOR–1. Mice homozygous for either MOR–1 mutation were insensitive to morphine. Heroin, 6–acetylmorphine and M6G still elicited analgesia in the exon–1 MOR–1 mutant, which also showed specific M6G binding, whereas M6G and 6–acetylmorphine were inactive in the exon–2 MOR–1 mutant. These results provide genetic evidence for a unique receptor site for M6G and heroin analgesia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Creation of MOR–1 exon–1 mutant mice.
Figure 2: Analgesic action of opioids in wild–type, heterozygous or homozygous mice.
Figure 3: Inhibition of M6G analgesia by selective opioid receptor antagonists.
Figure 4: Antisense effects of M6G analgesia.
Figure 5: [3H]M6G binding in exon–1 MOR–1 mutant mice.
Figure 6: RT–PCR of MOR–1 transcripts in exon–1–deficient mice.

Similar content being viewed by others

References

  1. Pasternak, G. W. Pharmacological mechanisms of opioid analgesics. Clin. Neuropharmacol. 16, 1–18 (1993).

    Article  CAS  Google Scholar 

  2. Way, E. L., Young, J. & Kemp, J. Metabolism of heroin and its pharmacological implications. Bull. Narcotics 17, 25–33 (1965).

    CAS  Google Scholar 

  3. Way, E., Kemp, J., Young, J. & Grasetti, D. R. The pharmacologic effects of heroin in relationship to its rate of biotransformation. Pharmacol. Exp. Ther. 129, 144–154 (1960).

    CAS  Google Scholar 

  4. Oldendorf, W. H., Hyman, S., Braun, L. & Oldendorf, S. Z. Blood–brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 178, 984–986 (1972).

    Article  CAS  Google Scholar 

  5. Inturrisi, C. E. et al. The pharmacokinetics of heroin in patients with chronic pain. N. Engl. J. Med. 310, 1213–1217 (1984).

    Article  CAS  Google Scholar 

  6. Inturrisi, C. E. et al. Evidence from opiate binding studies that heroin acts through its metabolites. Life Sci. 33 Suppl 1, 773–776 (1983).

    Article  CAS  Google Scholar 

  7. Rossi, G., Pan, Y.–X., Cheng, J. & Pasternak, G. W. Blockade of morphine analgesia by an antisense oligodeoxynucleotide against the mu receptor. Life Sci. 54, PL375–379 (1994).

    Article  CAS  Google Scholar 

  8. Rossi, G. C., Standifer, K. M. & Pasternak, G. W. Differential blockade of morphine and morphine–6 beta–glucuronide analgesia by antisense oligodeoxynucleotides directed against MOR–1 and G–protein alpha subunits in rats. Neurosci. Lett. 198, 99–102 (1995).

    Article  CAS  Google Scholar 

  9. Rossi, G. C., Pan, Y.–X., Brown, G. P. & Pasternak, G. W. Antisense mapping the MOR–1 opioid receptor: evidence for alternative splicing and a novel morphine–6 beta–glucuronide receptor. FEBS Lett. 369, 192–196 (1995).

    Article  CAS  Google Scholar 

  10. Rossi, G. C., Brown, G. P., Leventhal, L., Yang, K. & Pasternak, G. W. Novel receptor mechanisms for heroin and morphine–6 beta–glucuronide analgesia. Neurosci. Lett. 216, 1–4 (1996).

    Article  CAS  Google Scholar 

  11. Pasternak, G. W. & Standifer, K. M. Mapping of opioid receptors using antisense oligodeoxynucleotides: correlating their molecular biology and pharmacology. Trends Pharmacol. Sci. 16, 344–350 (1995).

    Article  CAS  Google Scholar 

  12. Pick, C. G., Nejat, R. J. & Pasternak, G. W. Independent expression of two pharmacologically distinct supraspinal mu analgesic systems in genetically different mouse strains. J. Pharmacol. Exp. Ther. 265, 166–171 (1993).

    CAS  PubMed  Google Scholar 

  13. Moskowitz, A. S. & Goodman, R. R. Autoradiographic distribution of mu1 and mu2 opioid binding in the mouse central nervous system. Brain Res. 360, 117–129 (1985).

    Article  CAS  Google Scholar 

  14. Brown, G. P. et al. 3H–morphine–6beta–glucuronide binding in brain membranes and an MOR–1–transfected cell line. J. Pharmacol. Exp. Ther. 282, 1291–1297 (1997).

    CAS  PubMed  Google Scholar 

  15. Standifer, K. M., Rossi, G. C. & Pasternak, G. W. Differential blockade of opioid analgesia by antisense oligodeoxynucleotides directed against various G protein alpha subunits. Mol. Pharmacol. 50, 293–298 (1996).

    CAS  PubMed  Google Scholar 

  16. Rossi, G. C. et al. Antisense mapping of MOR–1 in rats: distinguishing between morphine and morphine–6beta–glucuronide antinociception. J. Pharmacol. Exp. Ther. 281, 109–114 (1997).

    CAS  PubMed  Google Scholar 

  17. Reisine, T. & Bell, G. I. Molecular biology of opioid receptors. Trends Neurosci. 16, 506–510 (1993).

    Article  CAS  Google Scholar 

  18. Uhl, G. R., Childers, S. & Pasternak, G. An opiate–receptor gene family reunion. Trends Neurosci. 17, 89–93 (1994).

    Article  CAS  Google Scholar 

  19. Zimprich, A., Simon, T. & Hollt, V. Cloning and expression of an isoform of the rat mu opioid receptor (rMOR1B) which differs in agonist induced desensitization from rMOR1. FEBS Lett. 359, 142–146 (1995).

    Article  CAS  Google Scholar 

  20. Bare, L. A., Mansson, E. & Yang, D. Expression of two variants of the human mu opioid receptor mRNA in SK–N–SH cells and human brain. FEBS Lett. 354, 213–216 (1994).

    Article  CAS  Google Scholar 

  21. Matthes, H. W. et al. Loss of morphine–induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu–opioid–receptor gene. Nature 383, 819–823 (1996).

    Article  CAS  Google Scholar 

  22. Sora, I. et al. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine–induced analgesia. Proc. Natl. Acad. Sci. USA 94, 1544–1549 (1997).

    Article  CAS  Google Scholar 

  23. Tian, M. et al. Altered hematopoiesis, behavior, and sexual function in mu opioid receptor–deficient mice. J. Exp. Med. 185, 1517–1522 (1997).

    Article  CAS  Google Scholar 

  24. Loh, H. H. et al. Mu opioid receptor knockout in mice: effects on ligand–induced analgesia and morphine lethality. Mol. Brain Res. 54, 321–326 (1998).

    Article  CAS  Google Scholar 

  25. Chen, X. H. et al. An antisense oligodeoxynucleotide to mu–opioid receptors inhibits mu–opioid receptor agonist–induced analgesia in rats. Eur. J. Pharmacol. 275, 105–108 (1995).

    Article  CAS  Google Scholar 

  26. Paul, D., Standifer, K. M., Inturrisi, C. E. & Pasternak, G. W. Pharmacological characterization of morphine–6 beta–glucuronide, a very potent morphine metabolite. J. Pharmacol. Exp. Ther. 251, 477–483 (1989).

    CAS  PubMed  Google Scholar 

  27. Brown, G. P. et al. 3–Methoxynaltrexone, a selective heroin/morphine–6beta–glucuronide antagonist. FEBS Lett. 412, 35–38 (1997).

    Article  CAS  Google Scholar 

  28. Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S. H. & Fishman, M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 1273–1286 (1993).

    Article  CAS  Google Scholar 

  29. Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD–95 and alpha1–syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).

    Article  CAS  Google Scholar 

  30. Joyner, A. L. Gene Targeting: A Practical Approach (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

Download references

Acknowledgements

The authors thank Rhuna Shen and Qian Ye for their contributions in mapping the mu opioid receptor gene and constructing the targeting vector. We thank Chris Evans, Jim Douglass and Grahaem Bell for providing probes for DOR–1, proenkephalin/prodynorphin and KOR–1, respectively, Z.P. Chen for providing the mouse ORL in situ probe, and Liz Robertson for providing CCE ES cells. We also thank Brigitte Kieffer and Hans Matthes for providing the exon–2 MOR–1 mutant mice. This work was supported by grants from the National Institute on Drug Abuse to J.E.P. (DA–09040 and DA–08622), Y.–X.P. (DA–00296) and G.W.P. (DA–07241, DA–02615 and a Research Scientist Award DA–00220) and a core grant from the National Cancer Institute to Memorial Sloan–Kettering Cancer Center (CA–08748). D.J.M. was supported by NIH training grant R25–GM–55145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Pintar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, A., King, M., Zhang, J. et al. Retention of heroin and morphine–6β–glucuronide analgesia in a new line of mice lacking exon 1 of MOR–1. Nat Neurosci 2, 151–156 (1999). https://doi.org/10.1038/5706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing