Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase

Abstract

Activation of the nuclear transcription factor NF-κB by inflammatory cytokines requires the successive action of NF-κB-inducing kinase (NIK) and an IκB-kinase (IKK) complex composed of IKKα and IKKβ1,2,3,4,5. Here we show that the Akt serine–threonine kinase6 is involved in the activation of NF-κB by tumour necrosis factor (TNF). TNF activates phosphatidylinositol-3-OH kinase (PI(3)K) and its downstream target Akt (protein kinase B). Wortmannin (a PI(3)K inhibitor), dominant-negative PI(3)K or kinase-dead Akt inhibits TNF-mediated NF-κB activation. Constitutively active Akt induces NF-κB activity and this effect is blocked by dominant-negative NIK. Conversely, NIK activates NF-κB and this is blocked by kinase-dead Akt. Thus, both Akt and NIK are necessary for TNF activation of NF-κB. Akt mediates IKKα phosphorylation at threonine 23. Mutation of this amino acid blocks phosphorylation by Akt or TNF and activation of NF-κB. These findings indicate that Akt is part of a signalling pathway that is necessary for inducing key immune and inflammatory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of PI(3)K and Akt by TNF.
Figure 2: NF-κB activation by a TNF-stimulated PI(3)K–Akt pathway.
Figure 3: NF-κB reporter activity in cells transfected with empty vector, CA-AKT or KD-Akt and then treated with vehicle or TNF.
Figure 4: Association of Akt with IKKα.
Figure 5: Threonine 23 in IKKα is a phosphorylation site for Akt.
Figure 6

Similar content being viewed by others

References

  1. DiDonato,J. A., Hayakawa,M., Rothwarf,D. M., Zandi,E. & Karin,M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Regnier,C. H. et al. Identification and characterization of an IκB kinase. Cell 90, 373–383 (1997).

    Article  CAS  Google Scholar 

  3. Mercurio,F. et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278, 860–866 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Woronicz,J. D., Gao,X., Rothe,M. & Goeddel,D. V. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278, 866–869 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Zandi,E., Rothwarf,D. M., Delhause,M., Hayakawa,M. & Karin,M. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91, 243–252 (1997).

    Article  CAS  Google Scholar 

  6. Marte,B. M. & Downward,J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22, 355–358 (1997).

    Article  CAS  Google Scholar 

  7. Bauerle,P. A. & Baltimore,D. NF-κB: Ten years after. Cell 87, 13–20 (1996).

    Article  Google Scholar 

  8. Wang, C.-Y., Mayo,M. W. & Baldwin, A. S. Jr TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    Article  ADS  Google Scholar 

  9. Van Antwerp,D. J., Martin,S. J., Kafri,T., Green,D. R. & Verma,I. M. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274, 787–789 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Maniatis,T. Catalysis by a multiprotein IκB kinase complex. Science 278, 818–819 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Hsu,H., Shu, H.-B., Pan, M.-G. & Goeddel,D. V. TRADD–TRAF2 and TRADD–FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  Google Scholar 

  12. Malinin,N. L., Boldin,M. P., Kovalenko,A. V. & Wallach,D. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385, 540–544 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Ling,L., Cao,Z. & Goeddel,D. V. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl Acad. Sci. USA 95, 3792–3797 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Guo,D. & Donner,D. B. Tumour necrosis factor promotes phosphorylation and binding of IRS-1 to phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J. Biol. Chem. 271, 615–618 (1996).

    Article  CAS  Google Scholar 

  15. Alessi,D. R., Caudwell,F. B., Andjelkovic,M., Hemmings,B. A. & Cohen,P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p60 S6 kinase. FEBS Lett. 399, 333–338 (1996).

    Article  CAS  Google Scholar 

  16. Tanaka,M. et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β deficient mice. Immunity 10, 421–429 (1999).

    Article  CAS  Google Scholar 

  17. Li,Q., Antwerp,D. V., Mercurio,F., Lee, K.-F. & Verma,I. M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–326 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Hu,Y. et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα of IκB kinase. Science 284, 316–320 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Delhause,M., Hayakawa,M., Chen,Y. & Karin,M. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284, 309–313 (1999).

    Article  ADS  Google Scholar 

  20. Ruderman,N. B., Kapeller,R., white,M. F. & Cantley,L. C. Activation of phosphatidylinositol 3-kinase by insulin. Proc. Natl Acad. Sci. USA 87, 1411–1415 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

L.D.M. is supported by a Hematology Oncology Training Grant from NIH. This work was supported by grants from NIH to D.B.D. and L.M.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Donner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nidai Ozes, O., Mayo, L., Gustin, J. et al. NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 401, 82–85 (1999). https://doi.org/10.1038/43466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43466

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing