Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels

Abstract

The risk of atherosclerosis, a leading cause of cardiovascular disease and death, is inversely related to plasma levels of high-density lipoprotein (HDL) cholesterol, although the mechanism of this protective effect is unclear1. The class B scavenger receptor, SR-BI, is the first HDL receptor to be well defined at a molecular level and is a mediator of selective cholesterol uptake in vitro2. It is expressed most abundantly in steroidogenic tissues, where it is coordinately regulated with steroidogenesis by adrenocorticotropic hormone (ACTH), human chorionic gonadotropin (hCG) and oestrogen, and in the liver, where its expression in rats is suppressed by oestrogen3,4. Here we show that adenovirus-mediated, hepatic overexpression of SR-BI in mice on both sinusoidal and canalicular surfaces of hepatocytes results in the virtual disappearance of plasma HDL and a substantial increase in biliary cholesterol. SR-BI may directly mediate these effects by increasing hepatic HDL cholesterol uptake or by increasing cholesterol secretion into bile, or both. These results indicate that SR-BI may be important in hepatic HDL metabolism, in determining plasma HDL concentrations, and in controlling cholesterol concentrations in bile, and thus may influence the development and progression of atherosclerosis and gallstone disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gordon, D. J. & Rifkind, B. M. High-density lipoprotein: the clinical implications of recent studies. N. Engl. J. Med. 321, 1311–1316 (1989).

    Article  CAS  Google Scholar 

  2. Acton, S. et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520 (1996).

    Article  CAS  ADS  Google Scholar 

  3. Landschulz, K. T., Pathak, R. K., Rigotti, A., Krieger, M. & Hobbs, H. H. Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J. Clin. Invest. 98, 984–995 (1996).

    Article  CAS  Google Scholar 

  4. Rigotti, A. et al. Regulation by adrenocorticotropic hormone of the in vivo expression of scavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland. J. Biol. Chem. 271, 33545–33549 (1996).

    Article  CAS  Google Scholar 

  5. Kozarsky, K. F. et al. In vivo correction of low density lipoprotein receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J. Biol. Chem. 269, 13695–13702 (1994).

    CAS  PubMed  Google Scholar 

  6. Engelhardt, J. F et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with El-deleted adenoviruses. Nature Genet. 4, 27–34 (1993).

    Article  CAS  Google Scholar 

  7. Herz, J. & Gerard, R. D. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc. Natl Acad. Sri. USA 90, 2812–2816 (1993).

    Article  CAS  ADS  Google Scholar 

  8. Yokode, M. R., Hammer, R. E., Ishibashi, S., Brown, M. S. & Goldstein, L. Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science 250, 1273–1275 (1990).

    Article  CAS  ADS  Google Scholar 

  9. Willnow, T. E., Sheng, Z., Ishibashi, S. & Herz, J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 264, 1471–1474 (1994).

    Article  CAS  ADS  Google Scholar 

  10. Ishibashi, S., Brown, M. S., Goldstein, J. L., Gerard, R. D., Hammer, R. E. & Herz, J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    Article  CAS  Google Scholar 

  11. Glass, C., Pittman, R. C., Weistein, D. B. & Steinberg, D. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol ester to liver, adrenal, and gonad. Proc. Natl Acad. Sci. USA 80, 5435–5439 (1983).

    Article  CAS  ADS  Google Scholar 

  12. Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  CAS  ADS  Google Scholar 

  13. Pittman, R. C., Knecht, T. P., Rosenbaum, M. S. & Taylor, C. A. A nonendocytotic mechanism for the selective uptake of high density lipoprotein-associated cholesterol esters. J. Biol. Chem. 262, 2443–2450 (1987).

    CAS  PubMed  Google Scholar 

  14. Leitersdorf, E., Stein, O., Eisenberg, S. & Stein, Y. Uptake of rat plasma HDL subfractions labeled with [3H]cholesteryl linoleyl ether or with 125I by cultured rat hepatocytes and adrenal cells. Biochim. Biophys. Acta 796, 72–82 (1984).

    Article  CAS  Google Scholar 

  15. Gwynne, J. T. & Mahafee, D. D. Rat adrenal uptake and metabolism of high density lipoprotein cholesteryl esters. J. Biol. Chem. 264, 8141–8150 (1989).

    CAS  PubMed  Google Scholar 

  16. Reaven, E., Chen, Y.-D. I., Spicher, M. & Azhar, S. Morphological evidence that high density lipoproteins are not internalized by steroid-producing cells during in situ organ perfusion. J. Clin. Invest. 74, 1384–1397 (1984).

    Article  CAS  Google Scholar 

  17. Rinninger, F. et al. Selective uptake of high-density lipoprotein-associated cholesteryl esters by human hepatocytes in primary culture. Hepatology 19, 1100–1114 (1994).

    CAS  PubMed  Google Scholar 

  18. Botham, K. M. & Bravo, E. The role of lipoprotein cholesterol in biliary steroid secretion: studies with in vivo experimental models. Prog. Lipid Res. 34, 71–97 (1995).

    Article  CAS  Google Scholar 

  19. Turley, S. & Dietschy, J. M. in The Liver, Biology and Pathobiology (eds Arias, I. M., Jakoby, W. B., Popper, H., Schachter, D. & Schafritz, D. A.) 617–641 (Raven, New York, 1988).

    Google Scholar 

  20. Rigotti, A., Marzolo, M. P. & Nervi, F. in Current Topics in Membranes (ed. Hoekstra, D.) 579–615 (Academic, San Diego, 1994).

    Google Scholar 

  21. Rigotti, A., Marzolo, M. P., Ulloa, N. & Nervi, F. Effect of bean intake on biliary lipid secretion and on hepatic cholesterol metabolism in the rat. J. Lipid Res. 30, 1041–1048 (1989).

    CAS  PubMed  Google Scholar 

  22. Carey, M. C. in Bile Acids, Cholestasis and Gallstones (eds H. Fromm, H. & Leuschner, U.) 147–175 (Kluwer, Dordrecht, 1996).

    Google Scholar 

  23. Thornton, J. R., Heaton, K. W. & MacFarlane, D. G. A relation between high-density-lipoprotein cholesterol and bile cholesterol saturation. Br. Med. J. 283, 1352–1354 (1981).

    Article  CAS  Google Scholar 

  24. Del Pozo, R., Nervi, F., Covarrubias, C. & Ronco, B. Reversal of progesterone-induced biliary cholesterol output by dietary cholesterol and ethynylestradiol. Biochim. Biophys. Acta 753, 164–172 (1983).

    Article  CAS  Google Scholar 

  25. Sewell, R. B., Mao, S. J., Kawamoto, T. & LaRusso, N. F. Apolipoproteins of high, low, and very low density lipoproteins in human bile. J. Lipid Res. 24, 391–401 (1983).

    CAS  PubMed  Google Scholar 

  26. Domingo, N. et al. Epitope mapping of the human biliary amphipathic, anionic polypeptide: similarity with a calcium-binding protein isolated from gallstones and bile, and immunologic cross-reactivity with apolipoprotein A-I. J. Lipid Res. 33, 1419–1430 (1992).

    CAS  PubMed  Google Scholar 

  27. Ye, X. et al. Prolonged metabolic correction in adult ornithine transcarbamylase-deficient mice with adenoviral vectors. J. Biol. Chem. 271, 3639–3646 (1996).

    Article  CAS  Google Scholar 

  28. Kozarsky, K. F., Jooss, K., Donahee, M., Strauss, J. F. & Wilson, J. M. Effective treatment of familial hypercholesterolaemia in the mouse model using adenovirus-mediated transfer of the VLDL receptor gene. Nature Genet. 13, 54–62 (1996).

    Article  CAS  Google Scholar 

  29. Kozarsky, K., Grossman, M. & Wilson, J. M. Adenovirus-mediated correction of the genetic defect in hepatocytes from patients with familial hypercholesterolemia. Somat. Cell Mol. Genet. 19, 449–458 (1993).

    Article  CAS  Google Scholar 

  30. Ulloa, N., Garrido, J. & Nervi, F. Ultracentrifugal isolation of vesicular carriers of biliary cholesterol in native human and rat bile. Hepatology 7, 234–244 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozarsky, K., Donahee, M., Rigotti, A. et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 387, 414–417 (1997). https://doi.org/10.1038/387414a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387414a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing