Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fear conditioning induces a lasting potentiation of synaptic currents in vitro

Abstract

The amygdala plays a critical role in the mediation of emotional responses, particularly fear, in both humans and animals1,2,3,4. Fear conditioning, a conditioned learning paradigm, has served as a model for emotional learning in animals, and the neuroanatomical circuitry underlying the auditory fear-conditioning paradigm is well characterized5. Synaptic transmission in the medial geniculate nucleus (MGN) to lateral nucleus of the amygdala (LA) pathway, a key segment of the auditory fear conditioning circuit, is mediated largely through N-methyl-D-aspartate (NMDA) and non-NMDA (such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)) glutamate receptors6; the potential for neural plasticity in this pathway is suggested by its capacity to support long-term potentiation (LTP)7,8. Here we report a long-lasting increase in the synaptic efficacy of the MGN–LA pathway attributable to fear-conditioning itself, rather than an electrically induced model of learning. Fear-conditioned animals show a presynaptic facilitation of AMPA-receptor-mediated transmission, directly measured in vitro with whole-cell recordings in lateral amygdala neurons. These findings represent one of the first in vitro measures of synaptic plasticity resulting from emotional learning by whole animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fear conditioning results in potentiation of evoked EPSCs.
Figure 2: PPF is decreased in fear-conditioned animals.
Figure 3: The endopyriform–LA pathway is not potentiated in fear-conditioned animals.

Similar content being viewed by others

References

  1. Scott, S. K. et al. Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature 385, 254–257 (1997).

    Article  CAS  ADS  Google Scholar 

  2. Aldolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372, 669–672 (1994).

    Article  ADS  Google Scholar 

  3. Maren, S. Synaptic transmission and plasticity in the amygdala: An emerging physiology of fear conditioning circuits. Mol. Neurobiol. 13, 1–22 (1996).

    Article  CAS  Google Scholar 

  4. Davis, M., Rainnie, D. & Cassell, M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci. 17, 208–214 (1994).

    Article  CAS  Google Scholar 

  5. LeDoux, J. E. Emotion: clues from the brain. Annu. Rev. Psychol 46, 209–235 (1995).

    Article  CAS  Google Scholar 

  6. Li, X. F., Phillips, R. & LeDoux, J. E. NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Exp. Brain Res. 105, 87–100 (1995).

    Article  CAS  Google Scholar 

  7. Clugnet, M. C. & LeDoux, J. E. Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. J. Neurosci. 10, 2818–2824 (1990).

    Article  CAS  Google Scholar 

  8. Rogan, M. T. & LeDoux, J. E. LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron 15, 127–136 (1995).

    Article  CAS  Google Scholar 

  9. Davis, M., Falls, W. A., Campeau, S. & Munsoo, K. Fear-potentiated startle: a neural and pharmacological analysis. Behav. Brain Res. 58, 175–198 (1993).

    Article  CAS  Google Scholar 

  10. Kim, M., Campeau, S., Falls, W. A. & Davis, M. Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle. Behav. Neural Biol. 59, 5–8 (1993).

    Article  CAS  Google Scholar 

  11. Miserendino, M. J. D., Sananes, C. B., Melia, K. R. & Davis, M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345, 716–718 (1990).

    Article  CAS  ADS  Google Scholar 

  12. LeDoux, J. E., Ruggiero, D. A. & Reis, D. J. Projections from anatomically defined regions of the medial geniculate body in the rat. J. Comp. Neurol. 242, 182–213 (1985).

    Article  CAS  Google Scholar 

  13. Parsons, C. G., Gruner, R. & Rozental, J. Comparative patch clamp studies on the kinetics and selectivity of glutamate receptor antagonism by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX) and 1-(4-aminophenyl)-4-methyl-7,8-methyl-endoxyl-5H-2,3-benzodiazepine (GYKI 52466). Neuropharmacology 33, 589–604 (1994).

    Article  CAS  Google Scholar 

  14. Muller, D., Joly, M. & Lynch, G. Differential contributions of quisqualate versus NMDA receptors to the induction and expression of long-term potentiation. Science 242, 1694–1697 (1988).

    Article  CAS  ADS  Google Scholar 

  15. Kauer, J., Malenka, R. & Nicoll, R. Apersistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1, 911–917 (1988).

    Article  CAS  Google Scholar 

  16. Kullman, D. Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: Implications for long-term potentiation. Neuron 12, 1111–1120 (1994).

    Article  Google Scholar 

  17. Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. 195, 481–492 (1968).

    Article  CAS  Google Scholar 

  18. Creager, R., Dunwiddie, T. & Lynch, G. Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. J. Physiol. 299, 409–424 (1980).

    Article  CAS  Google Scholar 

  19. Manabe, T., Wyllie, D. J. A., Perkel, D. J. & Nicoll, R. A. Modulation of synaptic transmission and long-term potentiation: effects on paired-pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J. Neurophys. 70, 1451–1459 (1993).

    Article  CAS  Google Scholar 

  20. Kuhnt, U. & Voronin, L. L. Interaction between paired-pulse facilitation and long-term potentiation in area CA1 of guinea-pig hippocampal slices: application of quantal analysis. Neuroscience 62, 391–397 (1994).

    Article  CAS  Google Scholar 

  21. Shulz, P., Cook, E. & Johnston, D. Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J. Neurosci. 14, 5325–5337 (1994).

    Article  Google Scholar 

  22. Clark, K. A., Randall, A. D. & Collinridge, G. L. Acomparison of paired-pulse facilitation of AMPA and NMDA receptor-mediated excitatory postsynaptic currents in the hippocampus. Exp. Brain Res. 101, 272–278 (1994).

    Article  CAS  Google Scholar 

  23. Muller, D. & Lynch, G. Synaptic modulation of N-methyl-D-aspartate receptor-mediated responses in hippocampus. Synapse 5, 94–103 (1990).

    Article  CAS  Google Scholar 

  24. Lin, J. & Faber, D. Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. II. Plasticity of excitatory ostsynaptic potentials. J. Neurosci. 8, 1313–1325 (1988).

    Article  CAS  Google Scholar 

  25. McKernan, M. & Shinnick-Gallagher, P. Paired-pulse facilitation (PPF) in an internal capsule-lateral amygdala pathway. Soc. Neurosci. Abstr. 22, 1536 (1996).

    Google Scholar 

  26. Neugebauer, V., Keele, N. B. & Shinnick-Gallagher, P. Epileptogenesis in vivo enhances the sensitivity of inhibitory presynaptic metabotropic glutamate receptors in basolateral amygdala neurons in vitro. J. Neurosci. 17, 983–995 (1997).

    Article  CAS  Google Scholar 

  27. Blanton, M. G., Lo Turco, J. J. & Kriegstein, A. R. Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J. Neurosci. Meth. 30, 203–210 (1989).

    Article  CAS  Google Scholar 

  28. Andreasen, M. & Hablitz, J. Paired-pulse facilitation in the dentate gyrus: A patch-clamp study in the rat hippocampus in vitro. J. Neurophysiol. 72, 326–336 (1994).

    Article  CAS  Google Scholar 

  29. Cassella, J. V. & Davis, M. The design and calibration of a startle measurement system. Physiol. and Behav. 36, 377–383 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. E. Blankenship, B. Christensen, J. Gallagher, K. Johnson, M. Thomas and V. Neugebauer for critically reading the manuscript, and K. Cunningham for statistical assistance. This work was supported by the John Sealy Memorial Endowment Fund for Biomedical Research (P.S.G.), an NIMH National Research Service Award (M.G.M.) and a PhRMA Medical Student Research Fellowship in Pharm.-Clinical Pharmacology (M.G.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shinnick-Gallagher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKernan, M., Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997). https://doi.org/10.1038/37605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37605

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing