Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Furin-dependent intracellular activation of the human stromelysin-3 zymogen

Abstract

HUMAN stromelysin-3, a new member of the matrix metalloproteinase family, is expressed in tissues undergoing the active remodelling associated with embryonic development, wound healing and tumour invasion1–3. But like all other members of the matrix metalloproteinase gene family, stromelysin-3 is synthesized as an inactive precursor that must be processed to its mature form in order to express enzymic activity4,5. Here we identify stromelysin-3 as the first matrix metalloproteinase to be discovered that can be processed directly to its enzymically active form by an obligate intracellular proteolytic event that occurs within the constitutive secretory pathway. Intracellular activation is regulated by an unusual 10-amino-acid insert sandwiched between the pro-and catalytic-domains of stromelysin-3, which is encrypted with an Arg-X-Arg-X-Lys-Arg recognition motif for the Golgi-associated proteinase, furin, a mammalian homologue of the yeast Kex2 pher-omone convertase6,7. A furin–stromelysin-3 processing axis not only differentiates the regulation of this enzyme from all previously characterized matrix metalloproteinases, but also identifies pro-protein convertases as potential targets for therapeutic intervention in matrix-destructive disease states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Basset, P. et al. Nature 348, 699–704 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Lefebvre, O. et al. J. Cell Biol. 119, 997–1002 (1992).

    Article  CAS  Google Scholar 

  3. Wolf, C. et al. Proc. natn. Acad. Sci., U.S.A. 90, 1843–1847 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Matrisian, L. M. BioEssays 14, 455–463 (1992).

    Article  CAS  Google Scholar 

  5. Birkedal-Hansen, H. et al. Crit. Rev. Oral Biol. Med. 4, 197–250 (1993).

    Article  CAS  Google Scholar 

  6. Steiner, D. F., Smeekens, S. P., Ohagi, S. & Chan, S. J. J. biol. chem. 267, 23435–23438 (1992).

    CAS  PubMed  Google Scholar 

  7. Seidah, N. G., Day, R. & Chretien, M. Biochem. Soc. Trans. 21, 685–691 (1993).

    Article  CAS  Google Scholar 

  8. Pei, D. Q., Majmudar, G. & Weiss, S. J. J. biol. Chem. 269, 25849–25855 (1994).

    CAS  PubMed  Google Scholar 

  9. Davies, B., Brown, P. Q., East, N., Crimmin, M. J. & Balkwill, E. R. Cancer Res. 53, 2087–2091 (1993).

    CAS  PubMed  Google Scholar 

  10. Watanabe, T. et al. J. biol. Chem. 267, 8270–8274 (1991).

    Google Scholar 

  11. Watanabe, T., Murakami, K. & Nakayama, K. FEBS Lett. 320, 215–218 (1993).

    Article  CAS  Google Scholar 

  12. Rehemtulla, A. & Kaufman, R. J. Blood 79, 2349–2355 (1992).

    CAS  PubMed  Google Scholar 

  13. Liu, Y.-C. et al. Proc. natn. Acad. Sci. U.S.A. 90, 8957–8961 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Wasley, C. L., Rehemtulla, A. & Kaufman, R. J. J. biol. Chem. 268, 8458–8465 (1993).

    CAS  PubMed  Google Scholar 

  15. Tsuneoka, M. et al. J. biol. Chem. 268, 26461–26465 (1993).

    CAS  PubMed  Google Scholar 

  16. Molloy, S. S., Thomas, K. J., Van Slyke, K., Stenberg, P. E. & Thomas, G. EMBO J. 13, 18–33 (1994).

    Article  CAS  Google Scholar 

  17. Vidricaire, J., Denault, J.-B. & Leduc, R. Biochem. biophys. Res. Commun. 195, 1011–1018 (1993).

    Article  CAS  Google Scholar 

  18. Patterton, D., Hayes, W. P. & Shi, Y. B. Devl Biol. 167, 252–262 (1995).

    Article  CAS  Google Scholar 

  19. Sato, H. et al. Nature 370, 61–65 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Cao, J., Sato, H., Takino, T. & Seiki, M. J. biol. Chem. 270, 801–805 (1995).

    Article  CAS  Google Scholar 

  21. Hallenberger, S. et al. Nature 360, 358–361 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Decroly, E. et al. J. biol. Chem. 269, 12240–12247 (1994).

    CAS  PubMed  Google Scholar 

  23. Ausubel, F. M. et al. (eds) Curr. Prot. molec. Biol. (Wiley, New York, 1994).

  24. Birken, S., Fetherston, J., Canfield, R. & Boime, R. J. biol. Chem. 256, 1816–1823 (1981).

    CAS  PubMed  Google Scholar 

  25. Desrochers, P. E., Mookhtiar, K., Van Wart, H., Hasty, K. A. & Weiss, S. J. J. biol. Chem. 267, 5005–5012 (1992).

    CAS  PubMed  Google Scholar 

  26. Bravo, D. A., Gleason, J. B., Sanchez, R. I., Roth, R. A. & Fuller, R. S. J. biol. Chem. 269, 25830–25837 (1994).

    CAS  PubMed  Google Scholar 

  27. Anderson, E. A., Thomas, L., Hayflick, J. S. & Thomas, G. J. biol. Chem. 268, 24887–24891 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, D., Weiss, S. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247 (1995). https://doi.org/10.1038/375244a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375244a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing