Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1

Abstract

PROFESSIONAL phagocytes, such as neutrophils and monocytes, have an NADPH oxidase that generates superoxide and other reduced oxygen species important in killing microorganisms (reviewed in ref. 1). Several components of the oxidase complex have been identified as targets of genetic defects causing chronic granulomatous disease2–4. The complex consists of an electron transport chain that has as its substrate cytosolic NADPH and which discharges superoxide into the cavity of the intracellular phagocytic vacuole. The only electron transport component identified so far is a low-potential cytochrome b (refs 5,6), apparently the only membrane component required7. At least three cytosolic factors are also necessary, two of which, p67phox and p47phox, have been identified by their absence in patients with chronic granulomatous disease8–11. A third component, ω1 (refs 12, 13), is required for stimulation of oxidase activity in a cell-free system14–16. The active components of purified ω1 are two proteins that associate as heterodimers17, and here we report that these are the small GTP-binding protein p21racl and the GDP-dissociation inhibitor rhoGDI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Segal, A. W. J. clin. Invest. 83, 1785–1793 (1989).

    Article  CAS  Google Scholar 

  2. Quie, P. G., White, J. G., Holmes, B. & Good, R. A. J. clin. Invest. 46, 668–679 (1967).

    Article  CAS  Google Scholar 

  3. Segal, A. W. et al. New Engl. J. Med. 308, 245–251 (1983).

    Article  CAS  Google Scholar 

  4. Clark, R. A. et al. New Engl. J. Med. 321, 647–652 (1989).

    Article  CAS  Google Scholar 

  5. Segal, A. W. & Jones, O. T. G. Nature 276, 515–517 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Cross, A. R., Jones, O. T. G., Harper, A. M. & Segal, A. W. Biochem. J. 194, 599–606 (1981).

    Article  CAS  Google Scholar 

  7. Knoller, S., Shpungin, S. & Pick, E. J. biol. Chem. 266, 2795–2804 (1991).

    CAS  PubMed  Google Scholar 

  8. Segal, A. W., Heyworth, P. G., Cockcroft, S. & Barrowman, M. M. Nature 316, 547–549 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Volpp, B. D., Nauseef, W. M. & Clark, R. A. Science 242, 1295–1297 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Nunoi, H., Rotrosen, D., Gallin, J. I. & Malech, H. L. Science 242, 1298–1301 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Leto, T. L. et al. Science 248, 727–730 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Pick, E., Kroizman, T. & Abo, A. J. Immun. 143, 4180–4187 (1989).

    CAS  PubMed  Google Scholar 

  13. Sha'ag, D. & Pick, E. Biochim. biophys. Acta 1037, 405–412 (1990).

    Article  CAS  Google Scholar 

  14. Bromberg, Y. & Pick, E. Cell. Immun. 88, 213–221 (1984).

    Article  CAS  Google Scholar 

  15. Heyneman, R. A. & Vercauteren, R. E. J. Leuk. Biol. 36, 751–759 (1984).

    Article  CAS  Google Scholar 

  16. Bromberg, Y. & Pick, E. J. biol. Chem. 260, 13539–13545 (1985).

    CAS  PubMed  Google Scholar 

  17. Abo, A. & Pick, E. J. biol. Chem. (in the press).

  18. Didsbury, J., Weber, R. F., Bokoch, G. W., Evans, T. & Snyderman, R. J. J. biol. Chem. 264, 16378–16382 (1989).

    CAS  Google Scholar 

  19. Fukumoto, Y. et al. Oncogene 5, 1321–1328 (1990).

    CAS  PubMed  Google Scholar 

  20. Seifert, R., Rosenthal, W. & Schultz, G. FEBS Lett. 205, 161–165 (1986).

    Article  CAS  Google Scholar 

  21. Gabig, T. G., English, D., Akard, L. P. & Schell, M. J. J biol. Chem. 262, 1685–1690 (1987).

    CAS  PubMed  Google Scholar 

  22. Ligeti, E., Doussiere, J. & Vignais, P. V. Biochemistry 27, 193–200 (1988).

    Article  CAS  Google Scholar 

  23. Aharoni, I. & Pick, E. J. Leuk. Biol. 48, 107–115 (1990).

    Article  CAS  Google Scholar 

  24. Eklund, E. A., Marshall, M., Gibbs, J. B., Crean, C. D. & Gabig, T. G. J. biol. Chem. 280, 13964–13970 (1991).

    Google Scholar 

  25. Quinn, M. T. et al. Nature 342, 198–200 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Hori, Y. et al. Oncogene 6, 515–522 (1991).

    CAS  PubMed  Google Scholar 

  27. Isomura, M., Kikuchi, A., Ohga, N. & Takai, Y. Oncogene 6, 119–124 (1991).

    CAS  PubMed  Google Scholar 

  28. Chardin, P. et al. EMBO J. 8, 1087–1092 (1989).

    Article  CAS  Google Scholar 

  29. Paterson, H. F. et al. J. Cell Biol. 111, 1001–1007 (1990).

    Article  CAS  Google Scholar 

  30. Rodaway, A. R. F., Teahan, C. G., Casimir, C. M., Segal, A. W. & Bentley, D. L. Molec. cell. Biol. 10, 5388–5396 (1990).

    Article  CAS  Google Scholar 

  31. Lomax, K. J., Leto, T. L., Nunoi, H., Gallin, J. I. & Malech, H. J. Science 245, 987 (1989).

    Article  ADS  Google Scholar 

  32. Volpp, B. D., Nauseef, W. M., Donelson, J. E., Moser, D. R. & Clark, R. A. Proc. natn. Acad. Sci. U.S.A. 86, 9563 (1989).

    Article  Google Scholar 

  33. Drubin, D. G., Mulholland, J., Zhu, Z. & Botstein, D. Nature 343, 288–290 (1990).

    Article  ADS  CAS  Google Scholar 

  34. Woodman, R. C. et al. J. clin. Invest. 87, 1345–1351 (1991).

    Article  CAS  Google Scholar 

  35. Clark, R. A., Volpp, B. D., Leidal, K. G. & Nauseef, W. M. J. clin. Invest. 85, 714–721 (1990).

    Article  CAS  Google Scholar 

  36. Pick, E. & Keisari, Y. Cell. Immun. 59, 301–318 (1981).

    Article  CAS  Google Scholar 

  37. Diekmann, D. et al. Nature 351, 400–402 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Pick, E., Bromberg, Y., Shpungin, S. & Gadba, R. J. J. biol. Chem. 262, 16476–16483 (1987).

    CAS  PubMed  Google Scholar 

  39. Hall, A. & Self, A. J. J. biol. Chem. 261, 10963–10965 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abo, A., Pick, E., Hall, A. et al. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353, 668–670 (1991). https://doi.org/10.1038/353668a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353668a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing