Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glia: listening and talking to the synapse

Key Points

  • Glial cells have been largely regarded as merely the supportive elements in the nervous system. However, recent evidence indicates that the glia have an active role in modulating synaptic transmission. In fact, communication between neurons and glia is bidirectional, as neuronal activity can elicit changes in glial calcium levels.

  • Different molecules released by neurons can affect intracellular Ca2+ levels in glial cells. Glutamate has received a lot of attention in this regard, and it has been shown to modulate glial Ca2+ levels both in culture and in situ.

  • The increases in Ca2+ levels experienced by individual glial cells can propagate across large distances in the form of Ca2+ waves. The mechanism of propagation seems to involve both intracellular and extracellular signals (inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) and ATP, respectively). It is likely that Ins(1,4,5)P3 diffusion through gap junctions is important for short-range wave propagation, whereas ATP might be more relevant for propagation across larger distances.

    • ATP is not the only transmitter released by astrocytes. This cell type can also release glutamate in a calcium-dependent manner that probably involves exocytosis. d-serine is another molecule released by astrocytes, although its release mechanism is not known. Similarly, the pathway responsible for ATP release remains to be discovered but is unlikely to involve vesicle fusion.

  • Transmitters released by astrocytes can modulate synaptic transmission, giving rise to the concept of 'tripartite synapses'. Evidence regarding this modulation has been obtained both in culture and in situ, and it seems to affect basal synaptic transmission, as well as plastic phenomena. Moreover, glial cells can also modulate neuronal activity through a direct pathway that involves gap junctions between neurons and glia.

  • The reciprocal communication between neurons and glia adds degrees of freedom to brain function. For example, increases in astrocytic calcium elicited by the activity of a given synapse could affect the function of synapses at distant locations through the spread of the calcium signal within the same astrocyte. Is this phenomenon ever observed in situ ? What are the functional consequences of this lateral, much slower, signalling pathway? Future experiments will aim to address these questions.

Abstract

Glial cells are emerging from the background to become more prominent in our thinking about integration in the nervous system. Given that glial cells associated with synapses integrate neuronal inputs and can release transmitters that modulate synaptic activity, it is time to rethink our understanding of the wiring diagram of the nervous system. It is no longer appropriate to consider solely neuron–neuron connections; we also need to develop a view of the intricate web of active connections among glial cells, and between glia and neurons. Without such a view, it might be impossible to decode the language of the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glial cells make intimate contact with synaptic terminals.
Figure 2: Neuronal stimulation causes a neurotransmitter-dependent elevation of astrocytic Ca2+.
Figure 3: Stimulation of glial cells from the retina evokes a radially propagating wave of elevated calcium.
Figure 4: Astrocytic calcium waves cause the calcium-dependent release of glutamate.
Figure 5: G-protein-mediated signalling in synaptically associated perisynaptic Schwann cells depresses neuromuscular transmission.
Figure 6: Intercellular signalling between neurons and astrocytes can have a local modulatory action, as well as participate in the communication between distant synapses.

Similar content being viewed by others

References

  1. Parpura, V. & Haydon, P. G. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc. Natl Acad. Sci. USA 97, 8629– 8634 (2000).By using quantitative imaging and photorelease of Ca2+, this study showed that physiological levels of Ca2+ evoke sufficient release of glutamate from astrocytes to modulate neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. LoTurco, J. J. Neural circuits in the 21st century: synaptic networks of neurons and glia . Proc. Natl Acad. Sci. USA 97, 8196– 8197 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith, S. J. Neural signalling. Neuromodulatory astrocytes. Curr. Biol. 4, 807–810 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ventura, R. & Harris, K. M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grosche, J. et al. Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nature Neurosci. 2, 139–143 (1999). Subregions or microdomains of a single glial cell can show Ca2+ signals independent of the rest of the cell. This indicates that distinct regions of a glial cell could integrate information.

    Article  CAS  PubMed  Google Scholar 

  7. Orkand, R. K., Nicholls, J. G. & Kuffler, S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 788–806 ( 1966).

    Article  CAS  PubMed  Google Scholar 

  8. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus . Nature 405, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Cornell Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling . Science 247, 470–473 (1990).Original cell-culture study showing transmitter-induced Ca2+ signalling in astrocytes and the potential for long-range signal transmission between these cells. The results of this study opened the field to the possibility that astrocytes could form a pathway for information transfer.

    Article  CAS  PubMed  Google Scholar 

  11. Cornell Bell, A. H. & Finkbeiner, S. M. Ca2+ waves in astrocytes. Cell Calcium 12, 185–204 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Smith, S. J. Do astrocytes process neural information? Prog. Brain Res. 94, 119–136 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Finkbeiner, S. Calcium waves in astrocytes — filling in the gaps. Neuron 8, 1101–1108 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  14. Stevens, B. & Fields, R. D. Response of Schwann cells to action potentials in development. Science 287, 2267–2271 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Porter, J. T. & McCarthy, K. D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073–5081 (1996).By using acutely isolated hippocampal brain slices, this study showed that neural activity could regulate astrocytic Ca2+ levels as a result of a synaptic transmitter acting on astrocytic receptors, indicating that glutamate-mediated neuron–glia signalling could function in the intact nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dani, J. W., Chernjavsky, A. & Smith, S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429– 440 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281– 285 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Kulik, A., Haentzsch, A., Luckermann, M., Reichelt, W. & Ballanyi, K. Neuron–glia signaling via α1 adrenoceptor-mediated Ca2+ release in Bergmann glial cells in situ. J. Neurosci. 19, 8401– 8488 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duffy, S. & MacVicar, B. A. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J. Neurosci. 15, 5535–5550 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shelton, M. K. & McCarthy, K. D. Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J. Neurochem. 74, 555–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Z., Haydon, P. G. & Yeung, E. S. Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal. Chem. 72, 2001–2007 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Guthrie, P. B. et al. ATP released from astrocytes mediates glial calcium waves . J. Neurosci. 19, 520– 528 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cotrina, M. L. et al. Connexins regulate calcium signaling by controlling ATP release . Proc. Natl Acad. Sci. USA 95, 15735– 15740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci. 1, 683–692 (1998).This study provided the first evidence that astrocytes are a necessary intermediary in some forms of synaptic potentiation.

    Article  CAS  PubMed  Google Scholar 

  25. Verkhratsky, A., Orkand, R. K. & Kettenmann, H. Glial calcium: homeostasis and signaling function. Physiol. Rev. 78, 99–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Verkhratsky, A. & Kettenmann, H. Calcium signalling in glial cells. Trends Neurosci. 19, 346 –352 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Porter, J. T. & McCarthy, K. D. Astrocytic neurotransmitter receptors in situ and in vivo. Prog. Neurobiol. 51, 439–455 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Hassinger, T. D., Guthrie, P. B., Atkinson, P. B., Bennett, M. V. & Kater, S. B. An extracellular signaling component in propagation of astrocytic calcium waves. Proc. Natl Acad. Sci. USA 93, 13268–13273 ( 1996).The presence of an extracellular signal, which was later shown to be ATP, mediating astrocyte–astrocyte signalling was clearly shown in this study, which provided evidence that Ca2+ waves could 'jump' over cell-free regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charles, A. C., Merrill, J. E., Dirksen, E. R. & Sanderson, M. J. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Newman, E. A. & Zahs, K. R. Calcium waves in retinal glial cells . Science 275, 844–847 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harris-White, M. E., Zanotti, S. A., Frautschy, S. A. & Charles, A. C. Spiral intercellular calcium waves in hippocampal slice cultures. J. Neurophysiol. 79, 1045–1052 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Sneyd, J., Wetton, B. T., Charles, A. C. & Sanderson, M. J. Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. Am. J. Physiol. 268, C1537–C1545 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Sanderson, M. J., Charles, A. C., Boitano, S. & Dirksen, E. R. Mechanisms and function of intercellular calcium signaling. Mol. Cell Endocrinol. 98, 173–187 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Charles, A. C. et al. Intercellular calcium signaling via gap junctions in glioma cells. J. Cell Biol. 118, 195– 201 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Sneyd, J., Charles, A. C. & Sanderson, M. J. A model for the propagation of intercellular calcium waves. Am. J. Physiol. 266, C293– C302 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Leybaert, L., Paemeleire, K., Strahonja, A. & Sanderson, M. J. Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia 24, 398–407 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Giaume, C. & Venance, L. Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24, 50–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Enkvist, M. O. & McCarthy, K. D. Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves. J. Neurochem. 59, 519–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Charles, A. Intercellular calcium waves in glia. Glia 24, 39–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Fam, S. R., Gallagher, C. J. & Salter, M. W. P2Y1 purinoceptor-mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cord astrocytes. J. Neurosci. 20, 2800– 2808 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Newman, E. A. Propagation of intercellular calcium waves in retinal astrocytes and MĂĽller cells. J. Neurosci. (in the press).

  42. Cotrina, M. L. et al. Connexins regulate calcium signaling by controlling ATP release . Proc. Natl Acad. Sci. USA 95, 15735– 15740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scemes, E., Suadicani, S. O. & Spray, D. C. Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci. 20, 1435– 1445 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scemes, E., Dermietzel, R. & Spray, D. C. Calcium waves between astrocytes from Cx43 knockout mice. Glia 24, 65–73 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. John, G. R. et al. IL-1β differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc. Natl Acad. Sci. USA 96, 11613–11618 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blomstrand, F., Giaume, C., Hansson, E. & Ronnback, L. Distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca2+ signaling. Am. J. Physiol. 277, C616– C627 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Enkvist, M. O. & McCarthy, K. D. Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J. Neurochem. 62, 489–495 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Rouach, N., Glowinski, J. & Giaume, C. Activity-dependent neuronal control of gap-junctional communication in astrocytes. J. Cell Biol. 149, 1513–1526 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Venance, L., Piomelli, D., Glowinski, J. & Giaume, C. Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 376, 590– 594 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science. 291, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro. Science 277 , 1684–1687 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Haydon, P. G. Neuroglial networks: neurons and glia talk to each other. Curr. Biol. 10, R712–R714 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  53. Parpura, V. et al. Glutamate-mediated astrocyte–neuron signalling. Nature 369, 744–747 ( 1994).Original study showing that Ca2+ elevations in astrocytes evoke the release of glutamate, which signals to neighbouring neurons.

    Article  CAS  PubMed  Google Scholar 

  54. Jeftinija, S. D., Jeftinija, K. V., Stefanovic, G. & Liu, F. Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J. Neurochem. 66, 676 –684 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Innocenti, B., Parpura, V. & Haydon, P. G. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J. Neurosci. 20, 1800–1808 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jahn, R., Hanson, P. I., Otto, H. & Ahnert Hilger, G. Botulinum and tetanus neurotoxins: emerging tools for the study of membrane fusion. Cold Spring Harb. Symp. Quant. Biol. 60, 329– 335 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Link, E. et al. Tetanus and botulinal neurotoxins. Tools to understand exocytosis in neurons. Adv. Second Messenger Phosphoprotein Res. 29, 47–58 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Niemann, H., Blasi, J. & Jahn, R. Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Pharmacol. Sci. 4, 179–185 (1994).

    CAS  Google Scholar 

  59. Ahnert Hilger, G. & Bigalke, H. Molecular aspects of tetanus and botulinum neurotoxin poisoning. Prog. Neurobiol. 46, 83–96 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  60. Charles, A. C. Glia–neuron intercellular calcium signaling. Dev. Neurosci. 16, 196–206 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  61. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129–2142 (1998). First study to show that a chemical transmitter released from astrocytes can modulate synaptic transmission.

    Article  CAS  PubMed  Google Scholar 

  62. Wolosker, H. et al. Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc. Natl Acad. Sci. USA 96, 721–725 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schell, M. J., Molliver, M. E. & Snyder, S. H. d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc. Natl Acad. Sci. USA 92, 3948–3952 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mothet, J. P. et al. d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc. Natl Acad. Sci. USA 97, 4926–4931 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Attwell, D. Glia and neurons in dialogue. Nature 369, 707–708 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Parpura, V., Liu, F., Brethorst, S., Jeftinija, K., Jeftinija, S. & Haydon, P. G. α-Latrotoxin stimulates glutamate release from cortical astrocytes in cell culture. FEBS Lett. 360, 266– 270 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Parpura, V., Fang, Y., Basarsky, T., Jahn, R. & Haydon, P. G. Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett. 377, 489–492 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Hepp, R. et al. Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia 27, 181–187 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  69. Maienschein, V., Marxen, M., Volknandt, W. & Zimmermann, H. A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26, 233– 244 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Araque, A., Li, N., Doyle, R. T. & Haydon, P. G. SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20, 666–673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hassinger, T. D. et al. Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J. Neurobiol. 28, 159–170 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997).First study in a brain slice preparation supporting the cell-culture evidence that astrocytes can signal to neurons by releasing glutamate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Robitaille, R. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21, 847–855 (1998).This elegant study on the neuromuscular junction shows that synaptically associated glial cells are required for the modulation of synaptic transmission between nerve and muscle.

    Article  CAS  PubMed  Google Scholar 

  74. Son, Y. J., Trachtenberg, J. T. & Thompson, W. J. Schwann cells induce and guide sprouting and reinnervation of neuromuscular junctions. Trends Neurosci. 19, 280–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Jahromi, B. S., Robitaille, R. & Charlton, M. P. Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron 8, 1069–1077 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Reist, N. E. & Smith, S. J. Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction. Proc. Natl Acad. Sci. USA 89, 7625–7629 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Robitaille, R. Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction. J. Neurosci. 15, 7121–7131 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parpura, V., Liu, F., Jeftinija, K. V., Haydon, P. G. & Jeftinija, S. D. Neuroligand-evoked calcium-dependent release of excitatory amino acids from Schwann cells. J. Neurosci. 15, 5831–5839 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jeftinija, S. D. & Jeftinija, K. V. ATP stimulates release of excitatory amino acids from cultured Schwann cells. Neuroscience 82, 927–934 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Newman, E. A. & Zahs, K. R. Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022–4028 (1998). This study showed that Ca2+ elevations within glial cells of the retina can modulate information transfer from the photoreceptor to the retinal ganglion cell. This modulatory action provides compelling evidence that glial Ca2+ signals are intimately involved in the regulation of information processing in the nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bergles, D. E. & Jahr, C. E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus . J. Neurosci. 18, 7709– 7716 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bergles, D. E. & Jahr, C. E. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19, 1297–1308 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Araque, A., Sanzgiri, R. P., Parpura, V. & Haydon, P. G. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons . J. Neurosci. 18, 6822– 6829 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768– 1771 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Froes, M. M. et al. Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures Proc. Natl Acad. Sci. USA 96, 7541–7546 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alvarez-Maubecin, V., Garcia-Hernandez, F., Williams, J. T. & Van Bockstaele, E. J. Functional coupling between neurons and glia. J. Neurosci. 20, 4091–4098 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McKhann, G. M., D'Ambrosio, R. & Janigro, D. Heterogeneity of astrocyte resting membrane potentials and intercellular coupling revealed by whole-cell and gramicidin-perforated patch recordings from cultured neocortical and hippocampal slice astrocytes . J. Neurosci. 17, 6850– 6863 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Milner, T. A., Kurucz, O. S., Veznedaroglu, E. & Pierce, J. P. Septohippocampal neurons in the rat septal complex have substantial glial coverage and receive direct contacts from noradrenaline terminals. Brain Res. 670, 121–136 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Paspalas, C. D. & Papadopoulos, G. C. Ultrastructural relationships between noradrenergic nerve fibers and non-neuronal elements in the rat cerebral cortex. Glia 17, 133 –146 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 ( 1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.G.H. wishes to thank R. Doyle, H. Chen and J.-Y. Sul for comments on an earlier version of this manuscript, and V. Parpura, S. Shen, M. McCloskey and D. Sakaguchi for their stimulating discussions at various stages of these studies. Work done by P.G.H. is supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

PLC

P2Y1

IL-1β

P2Y2

connexin 43

FURTHER INFORMATION

Haydon lab

Glossary

PROSTAGLANDINS

Biologically active metabolites of arachidonic acid and other lipids. Prostaglandins have many functions; for example, they are involved in vasodilation, bronchodilation, inflamatory reactions and the regulation of cell proliferation.

BERGMANN GLIA

The main glial cell type present in the cerebellum.

SCHAFFER COLLATERALS

Axons of the CA3 pyramidal cells of the hippocampus that form synapses with the apical dendrites of CA1 neurons.

MĂśLLER GLIA

The main glial cell type present in the retina.

GAP JUNCTIONS

Cellular specializations that allow the passage of small molecules between the cytoplasm of adjacent cells. They are formed by channels termed connexons, multimeric complexes of proteins known as connexins.

CAGED INS(1,4,5)P3

In general terms, a caged molecule is a labile derivative of a biologically active molecule that will break down after appropriate (commonly luminous) stimulation to yield the bioactive compound.

LUCIFERIN–LUCIFERASE ASSAY

Method to detect the presence of ATP, which is based on the ability of the firefly enzyme luciferase to catalyse a reaction between its substrate luciferin and ATP and release the two terminal phosphate groups of ATP. Luciferin becomes excited during the process but, on return to its basal state, it releases energy in the form of light.

INTERLEUKIN-1β

Signalling molecule involved in the inflammatory response that can act as an endogenous pyrogen.

ENDOTHELIN

Molecule with potent vasoconstrictor activity. It is expressed by vascular cells, as well as in brain, kidney and lung.

ANANDAMIDE

An endogenous agonist of cannabinoid receptors.

TETANUS TOXIN

Protein derived from Clostridium tetani that can block transmitter release owing to its ability to degrade synaptobrevin. Tetanus toxin is the causative agent of tetanus.

PARALLEL FIBRES

The axons of cerebellar granule cells. Parallel fibres emerge from the molecular layer of the cerebellar cortex towards the periphery, where they extend branches perpendicular to the main axis of the Purkinje neurons and form the so-called en passant synapses with this cell type.

LOCUS COERULEUS

Nucleus of the brainstem. The main provider of noradrenaline to the brain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haydon, P. Glia: listening and talking to the synapse. Nat Rev Neurosci 2, 185–193 (2001). https://doi.org/10.1038/35058528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35058528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing