Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Neurogenesis in the adult brain: death of a dogma

Abstract

For over 100 years a central assumption in the field of neuroscience has been that new neurons are not added to the adult mammalian brain. This perspective examines the origins of this dogma, its perseverance in the face of contradictory evidence, and its final collapse. The acceptance of adult neurogenesis may be part of a contemporary paradigm shift in our view of the plasticity and stability of the adult brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell birth and death in adulthood.
Figure 2: Cell-specific markers and neurogenesis.

Similar content being viewed by others

References

  1. Ramón y Cajal, S. Degeneration and Regeneration of the Nervous System (Trans. Day, R. M., from the 1913 Spanish edn) (Oxford Univ. Press, London, 1928).

    Google Scholar 

  2. Rakic, P. DNA synthesis and cell division in the adult primate brain. Ann. NY Acad. Sci. 457, 193–211 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Jacobson, M. Developmental Neurobiology. (Holt, Rinehart, and Winston, New York, 1970).

  4. Kuhn, T. S. The Structure of Scientific Revolutions 2nd edn (Univ. of Chicago Press, Chicago, 1970).

    Google Scholar 

  5. Koelliker, A. Handbuch der Gewebelehre des Menschen (Engelmann, Leipzig, 1896).

    Google Scholar 

  6. His, W. Die Entwickelung des menschlichen Gehirns (Hirzel, Leipzig, 1904).

    Google Scholar 

  7. Ramón y Cajal, S. Texture of the Nervous System of Man and the Vertebrates (Trans. Pasik, P. & Pasik, T., from the 1899–1904 Spanish edn) (Springer, Vienna, 1999).

    Book  Google Scholar 

  8. Schaper, A. Die fruhesten differenzierungsvorgange im centralnervensystems. Arch. f Entw-Mech. Organ. 5, 81–132 (1897).

    Google Scholar 

  9. Kershman, J. The medulloblast and the medulloblastoma. Arch. Neurol. Psychiat. 40, 937–967 (1938).

    Article  Google Scholar 

  10. Levi, G. Sulla cariocinesi delle cellule nervose. Riv. Patol. Nerv. Ment. 3, 97–113 (1898).

    Google Scholar 

  11. Hamilton, A. The division of differentiated cells in the central nervous system of the white rat. J. Comp. Neurol. 11, 297–320 (1901).

    Article  Google Scholar 

  12. Allen, E. The cessation of mitosis in the central nervous system of the albino rat. J. Comp. Neurol. 19, 547–568 (1912).

    Google Scholar 

  13. Sugita, N. Comparative studies on the growth of the cerebral cortex. J. Comp. Neurol. 29, 61–117 (1918).

    Article  Google Scholar 

  14. Bryans, W. A. Mitotic activity in the brain of the adult white rat. Anat. Rec. 133, 65–71 (1959).

    Article  Google Scholar 

  15. Sidman, R. L., Miale, I. L. & Feder, N. Cell proliferation and migration in the primitive ependymal zone; an autoradiographic study of histogenesis in the nervous system. Exp. Neurol. 1, 322–333 (1959).

    Article  CAS  PubMed  Google Scholar 

  16. Smart, I. The subependymal layer of the mouse brain and its cell production as shown by autography after [H3]-thymidine injection. J. Comp. Neurol. 116, 325–47 (1961).

    Article  Google Scholar 

  17. Altman, J. Are new neurons formed in the brains of adult mammals? Science 135, 1127–1128 (1962).

    Article  CAS  PubMed  Google Scholar 

  18. Altman, J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Postnatal growth and differentiation of the mammalian brain, with implications for a morphological theory of memory. Anat. Rec. 145, 573–591 (1963).

    Article  CAS  PubMed  Google Scholar 

  19. Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    Article  CAS  PubMed  Google Scholar 

  20. Altman, J. & Das, G. D. Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 126, 337–390 (1966).

    Article  CAS  PubMed  Google Scholar 

  21. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 128, 431–474 (1966)

    Article  Google Scholar 

  22. Altman, J. in The Neurosciences, a Study Program (eds Quarton G. C., Melnechuck, T. & Schmitt, F. O.) 723–743 (Rockefeller Univ. Press, New York, 1967).

    Google Scholar 

  23. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–458 (1969).

    Article  CAS  PubMed  Google Scholar 

  24. Weiss, P. A. in The Neurosciences, Second Study Program (ed. Schmitt, F. O.) 53–61 (Rockefeller Univ. Press, New York, 1970).

    Google Scholar 

  25. Altman, J. & Bayer, S. A. Atlas of Prenatal Rat Brain Development (CRC, Boca Raton, 1995).

    Google Scholar 

  26. Kaplan, M. S. & Hinds, J. W. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. Kaplan, M. S. Mitotitic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J. Neurosci. 4, 1429–1441 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaplan, M. S. Neurogenesis in the 3-month-old rat visual cortex. J. Comp. Neurol. 195, 323–338 (1981).

    Article  CAS  PubMed  Google Scholar 

  29. Kaplan, M. S. Formation and turnover of neurons in young and senescent animals: an electron microscopic and morphometric analysis. Ann. NY Acad. Sci. 457, 173–192 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Kaplan, M. S. Proliferation of subependymal cells in the adult primate CNS: differential uptake of DNA labelled precursors. J. Hirnforsch. 23, 23–33 (1983).

    Google Scholar 

  31. Cohen, I. B. Revolution in Science (Harvard Univ. Press, Cambridge, 1985)

    Google Scholar 

  32. Rakic, P. Limits of neurogenesis in primates. Science 227, 1054–1056 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Eckenhoff, M. F. & Rakic, P. Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey. J. Neurosci. 8, 2729–2747 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boss, B. D., Peterson, G. M. & Cowan, W. M. On the number of neurons in the dentate gyrus of the rat. Brain Res. 338, 144–150 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gross, C. G. Huxley vs. Owen: the hippocampus minor and evolution. Trends Neurosci. 16, 493–498 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Gross, C. G. in Tales in the History of Neuroscience 137–178 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  38. Kornack, D. R. & Rakic, P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl Acad. Sci. USA 96, 5768–5773 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nottebohm, F. Neuronal replacement in adulthood. Ann. NY Acad. Sci. 457, 143–161 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Nottebohm, F. in Neural Control of Reproductive Function (eds Lakoski J. M., Perez-Polo J. R. & Rossin D. K.) 538–601 (A. R. Liss, New York, 1989).

    Google Scholar 

  41. Nottebohm, F. The King Solomon Lectures in Neuroethology. A white canary on Mount Acropolis. J. Comp. Physiol. A. 179, 149–156 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Goldman, S. A. & Nottebohm, F. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl Acad. Sci. USA. 80, 2390–2394 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burd, G. D. & Nottebohm, F. Ultrastructural characterization of synaptic terminals formed on newly generated neurons in a song control nucleus of the adult canary forebrain. J. Comp. Neurol. 240, 143–152 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Paton, J. A. & Nottebohm, F. N. Neurons generated in the adult brain are recruited into functional circuits. Science 225, 1046–1048 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. Barnea, A. & Nottebohm, F. Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc. Natl Acad. Sci. USA 91, 11217–11221 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barnea, A. & Nottebohm, F. Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proc. Natl Acad. Sci. USA 93, 714–718 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kirn, J. R. & Nottebohm, F. Direct evidence for loss and replacement of projection neurons in adult canary brain. J. Neurosci. 13, 1654–1663 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stanfield, B. B. & Trice, J. E. Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp. Brain Res. 72, 399–406 (1988).

    CAS  PubMed  Google Scholar 

  49. Nowakowski, R. S., Lewin, S. B. & Miller, M. W. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J. Neurocytol. 18, 311–318 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Schmechel, D. E., Brightman, M. W. & Marangos, P. J. Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res. 190, 195–214 (1980).

    Article  CAS  PubMed  Google Scholar 

  52. Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nature Med. 4, 1313–1317 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Honig, L. S., Herrmann, K. & Shatz, C. J. Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cereb. Cortex. 6, 794–806 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Roy, N. S. et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature Med. 3, 271–277 (2000).

    Article  CAS  Google Scholar 

  55. Menezes, J. R. & Luskin, M. B. Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J. Neurosci. 14, 5399–5416 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211(1992).

    CAS  PubMed  Google Scholar 

  57. Deloulme, J. C. et al. Expression of the neuron-specific enolase gene by rat oligodendroglial cells during their differentiation. J. Neurochem. 66, 936–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Sensenbrenner, M., Lucas, M. & Deloulme, J. C. Expression of two neuronal markers, growth-associated protein 43 and neuron-specific enolase, in rat glial cells. J. Mol. Med. 75, 653–663 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Rosser, A. E., Tyers, P., ter Borg, M., Dunnett, S. B & Svendsen, C. N. Co-expression of MAP-2 and GFAP in cells developing from rat EGF responsive precursor cells. Brain Res. Dev. Brain Res. 98, 291–295 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Barami, K., Iversen, K., Furneaux, H. & Goldman, S. A., Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain. J. Neurobiol. 28, 82–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Magavi, S. S., Leavitt, B. R. & Macklis, J. D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Seki, T. & Arai, Y. Temporal and spatial relationships between PSA-NCAM-expressing, newly generated granule cells, and radial glia-like cells in the adult dentate gyrus. J. Comp. Neurol. 410, 503–513 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, M. K., Tuttle, J. B., Rebhun, L. I., Cleveland, D. W. & Frankfurter, A. The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil. Cytoskeleton 17, 118–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Minturn, J. E., Geschwind, D. H., Fryer, H. J. L. & Hockfield, S. Early postmitotic neurons transiently express TOAD-64, a neural specific protein. J. Comp. Neurol. 355, 369–379 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Tanapat, P., Hastings, N. B., Reeves, A. J. & Gould, E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J. Neurosci. 19, 5792–5801 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Quinn, C. C, Gray, G. E. & Hockfield, S. A family of proteins implicated in axon guidance and outgrowth. J. Neurobiol. 41, 158–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Kostyk, S. K., Wheeler, E. L. & Wagner, J. A. Unusual expression of the Hu paraneoplastic antigen in visual system. Neuroreport 7, 1549–1552 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Lazarova, D. L., Spengler, B. A., Biedler, J. L. & Ross, R. A. HuD, a neuronal-specific RNA-binding protein, is a putative regulator of N-myc pre-mRNA processing/stability in malignant human neuroblasts. Oncogene 18, 2703–2710 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Nishizawa, Y., Kurihara, T., Masuda, T. & Takahashi, Y. Immunohistochemical localization of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in adult bovine cerebrum and cerebellum. Neurochem. Res. 10, 1107–1118 (1985).

    Article  CAS  PubMed  Google Scholar 

  71. Sommer, I. & Schachner, M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83, 311–327 (1981).

    Article  CAS  PubMed  Google Scholar 

  72. Cameron, H. A. Woolley, C. S., McEwen, B. S. & Gould, E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 56, 337–344 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Choi, B. H. Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: a light and electron microscopic immunoperoxidase study. J. Neuropathol. Exp. Neurol. 45, 408–418 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, M. Z. & McKanna, J. A. Gliogenesis in postnatal rat optic nerve: LC1+ microglia and S100-beta+ astrocytes. Brain Res. Dev. Brain Res. 101, 27–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neurosci. 2, 266–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Bayer, S. A. 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp. Brain Res. 50, 329–340, (1983).

    CAS  PubMed  Google Scholar 

  77. Jacobson, M. Developmental Neurobiology 3rd edn (Holt, Rinehart, and Winston, New York, 1991).

    Book  Google Scholar 

  78. Bayer, S. A. Changes in the total number of dentate granule cells in juvenile and adult rats: A correlated volumetric and 3H-thymidine autoradiographic study. Exp. Brain Res. 46, 315–323 (1982).

    Article  CAS  PubMed  Google Scholar 

  79. Gould, E. & Tanapat, P. Stress and hippocampal neurogenesis. Biol. Psychiat. 46, 1472–1479 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Cameron, H. A. & McKay, R. D. Restoring production of hippocampal neurons in old age. Nature Neurosci. 2, 894–897 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Eisch, A. J., Barrot, M., Schad, C. A., Self, D. W. & Nestler, E. J. Opiates inhibit neurogenesis in the adult rat hippocampus. Proc. Natl Acad. Sci. USA 97, 7579–7584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kempermann, G., Kuhn, H. G. & Gage, F. H. Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18, 3206–3212 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nilsson, M., Perfilieva, E., Johansson, V., Orwar, O. & Eriksson, P. S. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol. 39, 569–578 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning and long-term potentiation in mice. Proc. Natl Acad. Sci. USA 96, 13427–13431 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Isaacs, K. R., Anderson, B. J., Alcanatara, A. A., Black, J. E. & Greenough, W. T. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow. Metab. 12, 110–119 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Gould, E., Beylin, A., Tanapat, P., Reeves, A. & Shors, T. J. Learning enhances adult neurogenesis in the hippocampal formation. Nature Neurosci. 2, 260–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Greenough, W. T., Cohen, N. J. & Juraska, J. M. New neurons in old brains: learning to survive? Nature Neurosci. 2, 203–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Ambrogini, P. et al. Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci. Lett. 286, 21–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Klintsova, A. Y. & Greenough, W. T. Synaptic plasticity in cortical systems. Curr. Opin. Neurobiol. 9, 203–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Kaas, J. H. Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci. 14, 137–167 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Merzenich, M. M. & Sameshima, K. Cortical plasticity and memory. Curr. Opin. Neurobiol. 3, 187–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Knudsen, E. I. Capacity for plasticity in the owl auditory system expanded by juvenile experience. Science 279, 1531–1533 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Weinberger, N. M. Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu. Rev. Neurosci. 18, 129–158 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McEwen, B. S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Gould, E., Tanapat, P., McEwen, B. S., Flugge, G. & Fuchs, E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl Acad. Sci. USA 95, 3168–3171 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gould, E. et al. Hippocampal neurogenesis in Old World primates. Proc. Natl Acad. Sci. USA 96, 5263–5267 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gage, F. H. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl Acad. Sci. USA 92, 11879–11883 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gould, E., Reeves, A. J., Graziano, M. S. A. & Gross, C. G. Neurogenesis in the neocortex of adult primates. Science 286, 548–552 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Gould, E. & Gross, C. G. Reply to Nowakowski, R. S. & Hayes, N. L. New Neurons: Extraordinary Evidence or Extraordinary Conclusion? Science 288, online, http://www.sciencemag.org/cgi/content/full/288/5467/771a (2000).

  100. Hastings, N. B., Tanapat, P. & Gould, E. Comparative Views of Adult Neurogenesis. The Neuroscientist 6, 313–325 (2000)

    Article  Google Scholar 

  101. Gould, E., Tanapat, P., Hastings, N. B. & Shors, T. J. Neurogenesis in adulthood: a possible role in learning. Trends Cogn. Sci. 3, 186–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Renner, M. J. & Rosenzweig, M. R. Enriched and impoverished environments: effects on brain and behavior (Springer, New York, 1987).

    Book  Google Scholar 

  103. Quartz, S. R., & Sejnowski, T. J. The neural basis of cognitive development: a constructivist manifesto. Behav. Brain Sci. 20, 537–556 (1997).

    CAS  PubMed  Google Scholar 

  104. White, H. Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Netw. 3, 535–549 (1990).

    Article  Google Scholar 

  105. Hanson, S. J. in Advances in neural information processing systems Vol. 2, 533–542 (Morgan Kaufmann, San Mateo, 1990).

    Google Scholar 

  106. Valiant, L. G. Circuits of the Mind 2nd edn (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  107. Gaarskjaer, F. B. The organization and development of the hippocampal mossy fiber system. Brain Res. 396, 335–357 (1986).

    Article  CAS  PubMed  Google Scholar 

  108. Hastings, N. B. & Gould, E. Rapid extension of axons into the CA3 region by adult generated granule cells. J. Comp. Neurol. 413, 145–154 (1999).

    Article  Google Scholar 

  109. Bronzino, J. D., Abu-Hasaballah, K., Austin-LaFrance, R. J. & Morgane, P. J. Quantitative analysis of long-term potentiation in the hippocampal dentate gyrus of the freely-moving 15-day-old rat. Brain Res. Bull. 36, 321–324 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, S., Scott, B. W. & Wojtowicz, J. M., Heterogenous properties of dentate granule neurons in the adult rat. J. Neurobiol. 42, 248–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper arose out of collaborative work with E. Gould, who commented in detail on previous drafts and prepared all the figures. I also thank M.S.A. Graziano, G. Krauthamer, N. Vail, M. Wagers, K. Sheingold, the James S. McDonnell foundation and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, C. Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1, 67–73 (2000). https://doi.org/10.1038/35036235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing