Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA

Abstract

In the mammalian central nervous system, glycine and γ-aminobutyric acid (GABA) bind to specific and distinct receptors1–4 and cause an increase in membrane conductance to Cl (refs 5–7). Neurones in various regions of the nervous system show differential sensitivity to glycine and GABA2,3; thus GABA and glycine receptors are spatially distinct from one another. However, on the basis of desensitization experiments on spinal cord neurones, it was suggested that the receptors for glycine and GABA may share the same Cl channel8. We now report that in small membrane patches, isolated from the soma of spinal neurones, both receptor channels display several (multiple) conductance states. Two of the states are common to both receptor channels. However, the most frequently observed ‘main conductance states’ of the GABA and glycine receptor channels are different. Both channels display the same anion selectivity. We propose that one class of multistate Clchannel is coupled to either GABA or glycine receptors. The main conductance state adopted by this channel is determined by the receptor to which it is coupled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Werman, R., Davidoff, R. A. & Aprison, M. H. Nature 214, 681–683 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Curtis, D. R. & Johnston, G. A. R. Ergebn. Physiol. 69, 97–188 (1974).

    CAS  Google Scholar 

  3. Krnjevic, K. Physiol. Rev. 54, 418–540 (1974).

    Article  CAS  Google Scholar 

  4. Peck, E. J. A. Rev. Physiol. 42, 615–627 (1980).

    Article  CAS  Google Scholar 

  5. Curtis, D. R., Hösil, L., Johnston, G. A. R. & Johnston, I. H., Expl Brain Res. 5, 235–258 (1968).

    Article  CAS  Google Scholar 

  6. Krnjevic, K. & Schwartz, S. Expl Brain Res. 3, 320–336 (1967).

    Article  CAS  Google Scholar 

  7. Barker, J. L. & Ransom, B. R. J. Physiol., Lond. 280, 331–354 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Barker, J. L. & McBurney, R. N. Nature 277, 234–236 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Ransom, B. R., Neale, E., Henkart, M., Bullock, P. N. & Nelson, P. G. J. Neurophysiol. 40, 1132–1150 (1977).

    Article  CAS  Google Scholar 

  10. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  11. Sakmann, B., Hamill, O. P. & Bormann, J. J. Neural Transm. Suppl. 18, 83–95 (1983).

    CAS  PubMed  Google Scholar 

  12. Sakmann, B. & Neher, E. in Single Channel Recording (eds Sakmann, B. & Neher, E.) (Plenum, New York, in the press).

  13. Barker, J. L., McBurney, R. N. & MacDonald, J. F. J. Physiol., Lond. 322, 365–387 (1982).

    Article  CAS  Google Scholar 

  14. Sakmann, B., Patlak, J. & Neher, E. Nature 286, 71–73 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Orly, J. & Schramm, M. Proc. natn. Acad. Sci. U.S.A. 73, 4410–4414 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Rodbell, M. Nature 284, 17–22 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Reilly, T. M. & Blechner, M. Proc. natn. Acad. Sci. U.S.A. 78, 182–186 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Swann, J. W. & Carpenter, D. O. Nature 258, 751–754 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamill, O., Bormann, J. & Sakmann, B. Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. Nature 305, 805–808 (1983). https://doi.org/10.1038/305805a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305805a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing