Skip to main content
Log in

Efflux of Zidovudine and 2′,3′-Dideoxyinosine Out of the Cerebrospinal Fluid When Administered Alone and in Combination to Macaca nemestrina

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

To determine if there is active efflux of zidovudine (ZDV) and 2′,3′-dideoxyinosine (ddl) out of the cerebrospinal fluid (CSF), and if this efflux is saturable, we investigated the steady-state CSF/plasma concentration ratio of the two drugs when administered alone or in combination. Constant-rate infusions of ZDV, ddl or both were administered to seven macaques (Macaca nemestrina) through a chronic venous catheter for a minimum of 28 hr. Antipyrine, a marker of passive diffusion, was coinfused in all experiments. Blood (5 mL) and CSF samples (0.5–1 mL) were collected by venous and lumbar/thoracic punctures, respectively, at 24 and 28 hr after beginning the infusion. When ZDV and ddl were administered alone, the steady-state CSF/plasma concentration ratios were significantly different from unity (ZDV, 0.20 ± 0.08; ddI, 0.09 ± 0.04) and were independent of the plasma concentration (P > 0.05). In contrast, the CSF/plasma concentration ratio of antipyrine (0.82 ± 0.19) was close but significantly smaller than unity (P > 0.05). The CSF/ plasma concentration ratios after simultaneous administration of ZDV and ddI were not significantly different (P > 0.05) from those obtained after administration of the drugs alone. These results suggest that ZDV and ddI are actively transported out of the CSF; however, within the concentration range studied, this efflux is neither saturable nor mutually competitive. Concomitant administration of ZDV and ddI did not produce a systemic interaction in the animals, indicating that the pharmacokinetics of either drug is unaffected by the presence of the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. K. Petito. Review of central nervous system pathology in human immunodeficiency virus infection. Ann. Neurol. 23(Suppl.):S54–S57 (1988).

    Google Scholar 

  2. P. Portegies, J. de Gans, J. M. A. Lange, M. M. A. Derix, H. Spelman, M. Bakker, S. A. Danner, and J. Goldsmit. Declining incidence of AIDS dementia complex after introduction of zidovudine treatment. Br. Med. J. 299:819–821 (1989).

    Google Scholar 

  3. N. R. Hartman, R. Yarchoan, J. M. Pluda, R. V. Thomas, K. S. Marczyk, S. Broder, and D. G. Johns. Pharmacokinetics of 2′,3′-dideoxyadenosine and 2′,3′-dideoxyinosine in patients with severe human immunodeficiency virus infection. Clin. Pharmacol. Ther. 47:647–654 (1990).

    Google Scholar 

  4. B. A. Larder, G. Darby, and D. D. Richman. HIV with reduced sensitivity to zidovudine (AZT) isolated during therapy. Science 243:1731–1734 (1989).

    CAS  PubMed  Google Scholar 

  5. D. D. Richman, M. A. Fischl, M. H. Grieco, M. S. Gottlieb, P. A. Volberding, O. L. Laskin, J. M. Leedom, J. E. Groopman, D. Mildvan, M. S. Hirsch, G. G. Jackson, D. T. Durack, D. Phil, S. Nusinoff-Lehrman, and the AZT Collaborative Working Group. The toxicity of azidothymidine (AZT) in the treatments of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. N. Engl. J. Med. 317:192–197 (1987).

    Google Scholar 

  6. T. P. Cooley, L. M. Kunches, C. A. Saunders, J. K. Ritter, C. J. Perkins, C. McLaren, R. P. McCaffrey, and H A. Liebman. Once-daily administration of 2′,3′-dideoxyinosine (ddI) in patients with the acquired immunodeficiency syndrome or AIDS-related complex. Results of a phase I trial. N. Engl. J. Med. 322:1340–1345 (1990).

    Google Scholar 

  7. M. C. Bach. Clinical response to dideoxyinosine in patients with HIV infection resistant to zidovudine. N. Engl. J. Med. 323:275 (1990).

    Google Scholar 

  8. J. O. Kahn, S. W. Lagakos, D. D. Richman, A. Cross, C. Pettinelli, S.-H. Liou, M. Brown, P. A. Volberding, C. S. Crumpacker, G. Beall, H. S. Sacks, T. C. Merigan, M. Beltangady, L. Smaldone, R. Dolin, and the NIAID AIDS Clinical Trials Group. A controlled trial comparing continued zidovudine with didanosine in human immunodeficiency virus infection. N. Engl. J. Med. 327:581–587 (1992).

    Google Scholar 

  9. F. Balis, P. A. Pizzo, and R. F. Murphy. The pharmacokinetics of zidovudine administered by continuous infusion in children. Ann. Intern. Med. 110:279–285 (1980).

    Google Scholar 

  10. J. D. Fenstermacher and S. I. Rapoport. Blood-brain barrier. In S. R. Geiger, E. M. Renkin, and C. C. Michel (eds.), Handbook of Physiology, Microcirculation, Part 2, Vol. IV, American Physiological Society, Bethesda, MD, 1984, pp. 969–1000.

    Google Scholar 

  11. R. Spector and C. E. Johanson. The mammalian choroid plexus. Sci. Am. 261:68–74 (1989).

    Google Scholar 

  12. T. Terasaki and W. P. Pardridge. Restricted transport of 3′-azido-3′-deoxythymidine and dideoxynucleosides through the blood-brain barrier. J. Infect. Dis. 158:630–632 (1988).

    Google Scholar 

  13. R. J. Sawchuk and M. A. Hedaya. Modeling the enhanced uptake of zidovudine (AZT) into cerebrospinal fluid. 1. Effect of probenecid. Pharm. Res. 7:332–338 (1990).

    Google Scholar 

  14. M. A. Hedaya and R. J. Sawchuk. Effect of probenecid on the renal and non-renal clearances of zidovudine and its distribution into cerebrospinal fluid in the rabbit. J. Pharm. Sci. 78:716–722 (1988).

    Google Scholar 

  15. E. M. Cretton, R. F. Schinazi, H. M. McClure, D. C. Anderson, and J.-P. Sommadossi. Pharmacokinetics of 3′-azido-3′-deoxythymidine and its catabolites and interactions with probenecid in rhesus monkey. Antimicrob. Agents Chemother. 35:801–807 (1991).

    Google Scholar 

  16. R. E. Galinsky, K. K. Flaharty, B. L. Hoesterey, and B. D. Anderson. Probenecid enhances central nervous system uptake of 2′,3′-dideoxyinosine by inhibiting cerebrospinal fluid efflux. J. Pharmacol. Exp. Ther. 257:972–978 (1991).

    Google Scholar 

  17. B. M. Emanuelsson, L. Paalzow, and M. Sunzel. Probenecid-induced accumulation of 5-hydroxyindoleacetic acid and homovanillic acid in rat brain. J. Pharm. Pharmacol. 39:705–710 (1987).

    Google Scholar 

  18. W. R. Morton, G. H. Knitter, P. M. Smith, T. G. Susor, and K. Schmitt. Alternatives to chronic restraint on non-human primates. J. Am. Vet. Med. Assoc. 191:1282–1286 (1987).

    Google Scholar 

  19. G. G. Granich, M. R. Eveland, and D. J. Krogstad. Fluorescence polarization immunoassay for zidovudine. Antimicrob. Agents Chemother. 33:1275–1279 (1989).

    Google Scholar 

  20. A. Lopez-Anaya, J. D. Unadkat, L. A. Schumann, and A. L. Smith. Pharmacokinetics of zidovudine (azidothymidine). II. Development of metabolic and renal clearance pathways in the neonate. J. Acquir. Immun. Def. Syndr. 3:1052–1058 (1990).

    Google Scholar 

  21. A. Lopez-Anaya, J. D. Unadkat, D. F. Calkins, and A. L. Smith. Effect of age on distribution of zidovudine (azidothymidine) into the cerebrospinal fluid of M. nemestrina. Pharm. Res. 10:1338–1340 (1993).

    Google Scholar 

  22. T. P. Zimmerman, W. B. Mahony, and K. L. Prus. 3′-Azido-3′-deoxythymidine. An unusual nucleoside analogue that permeates the membrane of human erythrocytes and lymphocytes by nonfacilitated diffusion. J. Biol. Chem. 262:5748–5754 (1987).

    Google Scholar 

  23. G. Ahluwalia, D. A. Cooney, H. Mitsuya, et al. Initial studies on the cellular pharmacology of 2′,3′-dideoxyinosine, an inhibitor of HIV infectivity. Biochem. Pharmacol. 36:3797 (1987).

    Google Scholar 

  24. J. M. Collins, R. W. Klecker, Jr., J. A. Kelley, J. S. Roth, C. L. McCully, F. M. Balis, and D. G. Poplack. Pyrimidine dideoxyribonucleosides: Selectivity of penetration into cerebrospinal fluid. J. Pharmacol. Exp. Ther. 245:466–470 (1988).

    Google Scholar 

  25. J.-Y. Chatton, M. Odone, K. Besserghir, and F. Roch-Ramel. Renal secretion of 3′-azido-3′-deoxythymidine by the rat. J. Pharmacol. Exp. Ther. 255:140–145 (1990).

    Google Scholar 

  26. X. Wu, G. Yuan, C. M. Brett, A. C. Hui, and K. M. Giacomini. Sodium-dependent nucleoside transport in the choroid plexus from rabbit. Evidence for a single transporter for purine and pyrimidine nucleosides. J. Biol. Chem. 267:8813–8818 (1992).

    Google Scholar 

  27. M. G. Wientjes, E. Mukherji, and J. L.-S. Au. Nonlinear disposition of intravenous 2′,3′-dideoxyinosine in rats. Pharm. Res. 9:1070–1075 (1992).

    Google Scholar 

  28. M. G. Wientjes and J. L.-S. Au. Lack of pharmacokinetic interaction between intravenous 2′,3′-dideoxyinosine and 3′-azido-3′-deoxythymidine in rats. Antimicrob. Agents Chemother. 36:665–668 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuntland, T., Ravasco, R.J., Al-Habet, S. et al. Efflux of Zidovudine and 2′,3′-Dideoxyinosine Out of the Cerebrospinal Fluid When Administered Alone and in Combination to Macaca nemestrina . Pharm Res 11, 312–317 (1994). https://doi.org/10.1023/A:1018928013044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018928013044

Navigation