Skip to main content
Log in

Transport Activity of Human MRP3 Expressed in Sf9 Cells: Comparative Studies with Rat MRP3

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Multidrug resistance-associated protein 3 (MRP3) was initially cloned as a hepatic transporter induced under cholestatic/hyperbilirubinemic conditions. In the present study, transport property of human MRP3 (hMRP3) was compared with that of rat MRP3 (rMRP3).

Methods. Adenosine 5′ triphosphate (ATP)-dependent uptake of several organic anions into the membrane vesicles isolated from the Sf9 cells expressing hMRP3 and rMRP3 was measured by rapid filtration technique.

Results. ATP-dependent uptake of glucuronide conjugates, glutathione conjugates, and [3H]methotrexate (MTX) was stimulated by infection of cDNAs for hMRP3 and rMRP3. The mean (± SE) Km values for the uptake of 17β estradiol 17β-D-glucuronide ([3H]E217 βG) by hMRP3 and rMRP3 were 42.9 ± 4.3 μM and 33.4 ± 2.2 μM, respectively. Although the Ki values of glucuronides on the uptake of E217βG were similar in humans and rats, hMRP3 exhibited higher Ki values toward MTX. In addition, although glycocholate and taurolithocholate 3-sulfate (TLC-S) were transported by both hMRP3 and rMRP3, taurocholate was only transported to a significant degree by rMRP3. Moreover, the inhibitory effect of taurocholate and glycocholate on the transport of E217βG was much more potent in rMRP3 compared to hMRP3.

Conclusion. Collectively, the substrate specificity of hMRP3 resembles that of rMRP3 although differences were observed, particularly in bile acid transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Kool, M. de Haas, G. L. Scheffer, R. J. Scheper, M. J. van Eijk, J. A. Juijn, F. Baas, and P. Borst. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 57:3537–3547 (1997).

    Google Scholar 

  2. P. Borst. Multidrug resistant proteins. Semin. Cancer Biol. 8:131–134 (1997).

    Google Scholar 

  3. R. G. Deeley and S. P. Cole. Function, evolution and structure of multidrug resistance protein (MRP). Semin. Cancer Biol. 8:193–204 (1997).

    Google Scholar 

  4. D. Keppler and J. König. Hepatic canalicular membrane 5: expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. FASEB J. 11:509–516 (1997).

    Google Scholar 

  5. R. P. Oude Elferink, D. K. Meijer, F. Kuipers, P. L. Jansen, A. K. Groen, and G. M. Groothuis. Hepatobiliary secretion of organic compounds: molecular mechanisms of membrane transport. Biochim. Biophys. Acta 1241:215–268 (1995).

    Google Scholar 

  6. M. Müller and P. L. Jansen. Molecular aspects of hepatobiliary transport. Am. J. Physiol. 272:G1285–G1303 (1997).

    Google Scholar 

  7. H. Suzuki and Y. Sugiyama. Excretion of GSSG and glutathione conjugates mediated by MRP1 and cMOAT/MRP2. Semin. Liver Dis. 18:359–376 (1998).

    Google Scholar 

  8. T. Hirohashi, H. Suzuki, K. Ito, K. Ogawa, K. Kume, T. Shimizu, and Y. Sugiyama. Hepatic expression of multidrug resistanceassociated protein-like proteins maintained in eisai hyperbilirubinemic rats. Mol. Pharmacol. 53:1068–1075 (1998).

    Google Scholar 

  9. K. Ogawa, H. Suzuki, T. Hirohashi, T. Ishikawa, P. J. Meier, K. Hirose, T. Akizawa, M. Yoshioka, and Y. Sugiyama. Characterization of inducible nature of MRP3 in rat liver. Am. J. Physiol. 278:G438–G446 (2000).

    Google Scholar 

  10. C. J. Soroka, J. M. Lee, F. Azzaroli, and J. L. Boyer. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 33:783–791 (2001).

    Google Scholar 

  11. Y. Kiuchi, H. Suzuki, T. Hirohashi, C. A. Tyson, and Y. Sugiyama. cDNA cloning and inducible expression of human multidrug resistance associated protein 3 (MRP3). FEBS Lett. 433:149–152 (1998).

    Google Scholar 

  12. J. König, D. Rost, Y. Cui, and D. Keppler. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 29:1156–1163 (1999).

    Google Scholar 

  13. M. Kool, M. van der Linden, M. de Haas, G. L. Scheffer, J. M. de Vree, A. J. Smith, G. Jansen, G. J. Peters, N. Ponne, R. J. Scheper, R. P. Elferink, F. Baas, and P. Borst. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl. Acad. Sci. USA 96:6914–6919 (1999).

    Google Scholar 

  14. T. Hirohashi, H. Suzuki, and Y. Sugiyama. Characterization of the transport properties of cloned rat multidrug resistanceassociated protein 3 (MRP3). J. Biol. Chem. 274:15181–15185 (1999).

    Google Scholar 

  15. T. Hirohashi, H. Suzuki, H. Takikawa, and Y. Sugiyama. ATP-dependent transport of bile salts by rat multidrug resistanceassociated protein 3 (Mrp3). J. Biol. Chem. 275:2905–2910 (2000).

    Google Scholar 

  16. H. Zeng, L. J. Bain, M. G. Belinsky, and G. D. Kruh. Expression of multidrug resistance protein-3 (multispecific organic anion transporter-D) in human embryonic kidney 293 cells confers resistance to anticancer agents. Cancer Res. 59:5964–5967 (1999).

    Google Scholar 

  17. K. Kobayashi, Y. Sogame, H. Hara, and K. Hayashi. Mechanism of glutathione S-conjugate transport in canalicular and basolateral rat liver plasma membranes. J. Biol. Chem. 265:7737–7741 (1990).

    Google Scholar 

  18. O. Takenaka, T. Horie, H. Suzuki, and Y. Sugiyama. Different biliary excretion systems for glucuronide and sulfate of a model compound; study using Eisai hyperbilirubinemic rats. J. Pharmacol. Exp. Ther. 274:1362–1369 (1995).

    Google Scholar 

  19. J. Zhang, W. J. Griffiths, and J. Sjövall. The synthesis of btaurineconjugated bile acids and bile acid sulfates labeled with 14C or 3H in the taurine moiety. J. Labelled Compd. Radiopharm. 39:154–164 (1997).

    Google Scholar 

  20. K. Niinuma, O. Takenaka, T. Horie, K. Kobayashi, Y. Kato, H. Suzuki, and Y. Sugiyama. Kinetic analysis of the primary active transport of conjugated metabolites across the bile canalicular membrane: comparative study of S-(2,4-dinitrophenyl)-glutathione and 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl)benzothiazole glucuronide. J. Pharmacol. Exp. Ther. 282:866–872 (1997).

    Google Scholar 

  21. Y. Cui, J. König, J. K. Buchholz, H. Spring, I. Leier, and D. Keppler. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol. 55:929–937 (1999).

    Google Scholar 

  22. H. Zeng, G. Liu, P. A. Rea, and G. D. Kruh. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res. 60:4779–4784 (2000).

    Google Scholar 

  23. E. Bakos, R. Evers, E. Sinko, A. Varadi, P. Borst, and B. Sarkadi. Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol. Pharmacol. 57:760–768 (2000).

    Google Scholar 

  24. S. Dey, P. Hafkemeyer, I. Pastan, and M. M. Gottesman. A single amino acid residue contributes to distinct mechanisms of inhibition of the human multidrug transporter by stereoisomers of the dopamine receptor antagonist flupentixol. Biochemistry 38:6630–6639 (1999).

    Google Scholar 

  25. A. L. Craddock, M. W. Love, R. W. Daniel, L. C. Kirby, H. C. Walters, M. H. Wong, and P. A. Dawson. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am. J. Physiol. 274:G157–G169 (1998).

    Google Scholar 

  26. C. C. Martin and C. D. William. In I. M. Arias, J. L. Boyer, N. Fausto, W. B. Jakoby, D. A. Schachter, D. A. Shafrutz (eds.), Liver: Biology and Pathobiology Raven Press, New York, 1994 pp. 719–767.

    Google Scholar 

  27. Y. Siow, A. Schurr, and G. C. Vitale. Diabetes-induced bile acid composition changes in rat bile determined by high performance liquid chromatography. Life Sci. 49:1301–1308 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akita, H., Suzuki, H., Hirohashi, T. et al. Transport Activity of Human MRP3 Expressed in Sf9 Cells: Comparative Studies with Rat MRP3. Pharm Res 19, 34–41 (2002). https://doi.org/10.1023/A:1013699130991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013699130991

Navigation