Skip to main content
Log in

Polar Molecular Surface Properties Predict the Intestinal Absorption of Drugs in Humans

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. A theoretical method has been devised for prediction of drug absorption after oral administration to humans.

Methods. Twenty structurally diverse model drugs, ranging from 0.3 to 100% absorbed, were investigated. The compounds also displayed diversity in physicochemical properties such as lipophilicity, hydrogen bonding potential and molecular size. The dynamic molecular surface properties of the compounds were calculated, taking into account their three-dimensional shape and flexibility.

Results. An excellent sigmoidal relationship was established between the absorbed fraction after oral administration to humans (FA) and the dynamic polar molecular surface area (PSAd) (r2 = 0.94). The relationship was stronger than those obtained for more established predictors of drug absorption. Drugs that are completely absorbed (FA > 90%) had a PSAd ≤ 60 Å2 while drugs that are < 10% absorbed had a PSAd > 140 Å2.

Conclusions. The results indicate that PS Ad can be used to differentiate poorly absorbed drugs at an early stage of the drug discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. B. Testa and J. Caldwell. Med. Res. Rev. 16:233–241 (1996).

    Article  PubMed  Google Scholar 

  2. P. Artursson and J. Karlsson. Biochem. Biophys. Res. Commun. 175:880–885 (1991).

    PubMed  Google Scholar 

  3. P. Artursson, K. Palm, and K. Luthman. Adv. Drug Deliv. Rev. 22:67–84 (1996).

    Google Scholar 

  4. K. Palm, K. Luthman, A.-L. Ungell, G. Strandlund, and P. Artursson. J. Pharm. Sci. 85:32–39 (1996).

    PubMed  Google Scholar 

  5. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Adv. Drug Deliv. Rev. in press (1996).

  6. F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, and W. C. Still. J. Comp. Chem. 11:440–467 (1990).

    Google Scholar 

  7. M. M. Lipschutz. Theory and problems of differential geometry, McGraw-Hill, New York, 1969.

    Google Scholar 

  8. Obtained from PCMODEL v4.0; see J. J. Gajewski, K. E. Gilbert, and J. McKelvey. Adv. Mol. Model. 2:65–92 (1990).

    Google Scholar 

  9. S. Ren, A. Das, and E. L. Lien. J. Drug Target. 4:103–107 (1996).

    PubMed  Google Scholar 

  10. R. Mannhold, R. F. Rekker, C. Sonntag, A. M. ter Laak, K. Dross, and E. E. Polymeropoulos. J. Pharm. Sci. 84:1410–1419 (1995).

    PubMed  Google Scholar 

  11. H. van de Waterbeemd, G. Camenisch, G. Folkers, and O. A. Raevsky. Quant. Struct.-Act. Relat. 15:480–490 (1996).

    Google Scholar 

  12. J. M. Diamond and E. M. Wright. Proc. R. Soc. Lond. B. 172:273–316 (1969).

    Google Scholar 

  13. O. A. Raevsky, V. Y. Grigor'ev, D. B. Kireev, and N. S. Zefirov. Quant. Struct.-Act. Relat. 11:49–63 (1992).

    Google Scholar 

  14. F. Lombardo, J. F. Blake, and W. J. Curatolo. J. Med. Chem. 39:4750–4755 (1996).

    PubMed  Google Scholar 

  15. B. Testa, P.-A. Carrupt, P. Gaillard, F. Billois and P. Weber. Pharm. Res. 13:335–343 (1996).

    PubMed  Google Scholar 

  16. In the same order as in Table I: C. G. Regårdh, K. O. Borg, R. Johansson, G. Johnsson and L. Palmer. J. Pharmacokin. Biopharm. 2:347–364 (1974); D. J. Greenblatt, M. K. Divoll, M. H. Soong, H. G. Boxenbaum, J. S. Harmatz and R. I. Shader. J. Clin. Pharmacol. 28:853–859 (1988); H. R. Ochs, H. Otten, D. J. Greenblatt and H. J. Dengler. Dig. Dis. Sci. 27:225–230 (1982); W. Dieterle, J. W. Faigle, W. Küng and W. Theobald. Xenobiotica. 16:181–191 (1986); M. Eichelbaum, H. R. Ochs, G. Roberts and A. Somogyi. Arzneim.-Forsch. 32:575–578 (1982); J. Sonne, S. Loft, M. Døssing, A. Vollmer-Larsen, K. L. Olesen, M. Victor, F. Andreasen and P. B. Andreasen. Eur. J. Clin. Pharmacol. 35:385–389 (1988); N.-O. Bodin, K. O. Borg, R. Johansson, H. Obianwu and R. Svensson. Acta Pharmacol. Toxicol. 35:261–269 (1974); G. Bodem and C. A. Chidsey. Clin. Pharmacol. Ther. 14:26–29 (1972); R. Gugler, W. Herold and H. J. Dengler. Eur. J. Clin. Pharmacol. 7:17–24 (1974); G. L. Drusano, H. C. Standiford, K. Plaisance, A. Forrest, J. Leslie and J. Caldwell. Antimicrob. Agents Chemother. 30:444–446 (1986); W. J. Tilstone, H. Dargie, E. N. Dargie, H. G. Morgan and A. C. Kennedy. Clin. Pharmacol. Ther. 16:322–329 (1974); L. Widlund, S. Strömberg, H. Hallström and B. Osanius. Scientific Report 79 99 047, AB Kabi, Stockholm, 1979; W. D. Mason, N. Winer, G. Kochak, I. Cohen and R. Bell. Clin. Pharmacol. Ther. 25:408–415 (1979); F. Bressolle, J. Brès and A. Fauré-Jeantis. J. Pharm. Sci. 81:26–32 (1992); P. Munkholm, E. Langholz, D. Hollander, K. Thornberg, M. Orholm, K. D. Katz and V. Binder. Gut. 35:68–72 (1994); J. Sjövall, A. Karlsson, S. Ogenstad, E. Sandström and M. Saarimäki. Clin. Pharmacol. Ther. 44:65–73 (1988); E. M. Ryde and N.-O. Ahnfelt. Eur. J. Clin. Pharmacol. 34:481–488 (1988); D. G. Maxton, I. Bjarnason, A. P. Reynolds, S. D. Catt, T. J. Peters and I. S. Menzies. Clin. Sci. 71:71–80 (1986); R. W. Lobley, P. C. Burrows, R. Warwick, D. J. Dawson and R. Holmes. Clin. Sci. 79:175–183 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palm, K., Stenberg, P., Luthman, K. et al. Polar Molecular Surface Properties Predict the Intestinal Absorption of Drugs in Humans. Pharm Res 14, 568–571 (1997). https://doi.org/10.1023/A:1012188625088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012188625088

Navigation