Skip to main content
Log in

Sequence Alignments of the H+-Dependent Oligopeptide Transporter Family PTR: Inferences on Structure and Function of the Intestinal PET1 Transporter

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To study the structure and function of the intestinal H+/ peptide transporter PET1, we compared its amino acid sequence with those of related transporters belonging to the oligopeptide transporter family PTR, and with more distant transporter families.

Methods. We have developed a new approach to the sequence analysis of proteins with multiple transmembrane domains (TMDs) which takes into account the repeated TMD-loop topology. In addition to conventional analyses of the entire sequence, each TMD and its adjacent loop residues (=TMD segments) were analyzed separately as independent structural units. In combination with hydropathy analysis, this approach reveals any changes in the order of the TMD segments in the primary structure and permits TMD alignments among divergent structures even if rearrangements of the order of TMD segments have occurred in the course of evolution.

Results. Alignments of TMD segments indicate that the TMD order in PTR transporters may have changed in the process of evolution. Consideration of such changes permits the alignment of homologous TMD segments from PTR transporters belonging to distant akaryotic and eukaryotic phyla. Multiple alignments of TMDs reveal several highly conserved regions that may play a role in transporter function. In comparing the PTR transporters with other transporter gene families, alignment scores using the entire primary structure are too low to support a finding of probable homology. However, statistically significant alignments were observed among individual TMD segments if one disregards the order in which they occur in the primary structure.

Conclusions. Our results support the hypothesis that the PTR transporters may have evolved by rearrangement, duplication, or insertions and deletions of TMD segments as independent modules. This modular structure suggests new alignment strategies for determining functional domains and testing relationships among distant transporter families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. L. Amidon and H. J. Lee. Annu. Rev. Pharmacol. Toxicol. 34:321–341 (1994).

    Google Scholar 

  2. W. Kramer, F. Girbig, U. Gutjahr, H.-W. Kleemann, I. Leipe, H. Urbach, and A. Wagner. Biochim. et Biophys. Acta 1027:25–30 (1990).

    Google Scholar 

  3. A. H. Dantzig, and L. Bergin. Biochim. et Biophys. Acta 1027:211–217 (1990).

    Google Scholar 

  4. S.-I. Matsumoto, H. Saito, and K.-I. Inui. J. Pharmacol. Exp. Ther. 270:498–504 (1994).

    Google Scholar 

  5. Y. J. Fei, Y. Kanal, S. Nussberger, V. Ganapathy, F. H. Leibach, M. F. Romero, S. K. Singh, W. F. Boron, and M. A. Hediger. Nature 368:563–566 (1994).

    Google Scholar 

  6. R. Liang, Y.-J. Fei, P. D. Prasad, S. Ramamoorthy, H. Han, T. L. Yang-Feng, M. A. Hediger, V. Ganapathy, and F. H. Leibach. J. Biol. Chem. 240:6456–6463 (1995).

    Google Scholar 

  7. M. Boll, D. Markovich, W.-M. Weber, H. Korte, H. Daniel, and H. Murer. Eur. J. Physiol. 429:146–149 (1994).

    Google Scholar 

  8. M. Boll, M. Herget, W. M. Weber, D. Markovich, J. Biber, W. Clauss, H. Murer, and H. Daniel. Proc. Natl. Acad. Sci. USA 93:294–289 (1996).

    Google Scholar 

  9. U. Wenzel, I. Gevert, H. Weintraut, W.-M. Weber, W. Claub, and H. Daniel. J. Pharmacol. Exp. Ther. 277:831–839 (1996).

    Google Scholar 

  10. K.-M. Yu-Covitz, G. L. Amidon, and W. Sadée. Pharm. Res. 13:1631–1634 (1996).

    Google Scholar 

  11. H.-Y. Steiner, F. Naider, and J. M. Becker. Mol. Microbiol. 16:825–834 (1995).

    Google Scholar 

  12. I. T. Paulsen, and R. A. Skurray. Trends Biochem. Sci. 19:404 (1994).

    Google Scholar 

  13. W. Sadée, V. Drübbisch, and G. L. Amidon. Pharm. Res. 12:1823–1837 (1995).

    Google Scholar 

  14. P. J. F. Henderson. Curr. Opin. Cell Biol 5:708–721 (1993).

    Google Scholar 

  15. A. Hagting, E. R. S. Kunji, K. J. Leenhouts, B. Poolman, and W. N. Konings. J. Biol. Chem. 269:11391–11399 (1994).

    Google Scholar 

  16. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. J. Mol. Biol. 21:403–410 (1990).

    Google Scholar 

  17. R. F. Smith, and T. F. Smith. Prot. Engin. 5:35–41 (1992).

    Google Scholar 

  18. S. F. Altschul. J. Molec. Biol. 219:555–565 (1991).

    Google Scholar 

  19. M. Gribskov, and J. Devereux. Sequence Analysis Primer, W. H. Freeman & Co., N. Y., 1992.

    Google Scholar 

  20. M. G. Claros, and G. von Heijne. CABIOS 10:685–686 (1994).

    Google Scholar 

  21. G. von Heijne. J. Mol. Biol. 225:487–494 (1992).

    Google Scholar 

  22. D. M. Engleman, T. A. Steitz, and A. Goldman. Ann. Rev. Biophys. Chem. 15:321–353 (1986).

    Google Scholar 

  23. B. Persson, and P. Argos. J. Mol. Biol. 237:182–192 (1994).

    Google Scholar 

  24. D. C. Rees, L. DeAntonio, and D. Eisenberg. Science 245:510–513 (1992).

    Google Scholar 

  25. S. Karlin, and V. Brendel. Science 257:39–49 (1992).

    Google Scholar 

  26. M. D. Marger, M. H. Jr. Saier. TIBS 18:13–20 (1993).

    Google Scholar 

  27. R. P. Riek, M. D. Handschumacher, S. S. Sung, M. Tan, M. J. Glynias, M. D. Schluchter, J. Novotny, and R. M. Graham. J. Theor. Biol. 172:245–258 (1995).

    Google Scholar 

  28. J. K. Griffith, M. E. Baker, D. A. Rouch, M. G. P. Page, R. A. Skurray, I. T. Paulsen, K. F. Chater, S. A. Baldwin, and P. J. F. Henderson. Curr. Opin. Cell Biol 4:684–695 (1992).

    Google Scholar 

  29. T. Terada, H. Saito, M. Mukai, and K.-I. Inui. FEBS Lett. 394:196–200 (1996).

    Google Scholar 

  30. A. K. Yeung, D. Ann, M. B. Bolger, H. von Grafenstein, S. Hamm-Alvarez, W. Shen, C. T. Okamoto, K. J. Kim, S. K. Basu, I. S. Haworth, and V. H. L. Lee. Pharm.Res. 13:S-243 (1996).

    Google Scholar 

  31. Y. F. Tsay, J. I. Schroeder, K. A. Feldmann, and N. M. Crawford. Cell 72:705–713 (1993).

    Google Scholar 

  32. H. Y. Steiner, W. Song, L. Zhang, F. Naider, J. M. Becker, and G. Stacey. Plant Cell 6:1289–1299 (1994).

    Google Scholar 

  33. W. B. Frommer, S. Hummel, and D. Rentsch. Febs Let. 347:185–189 (1994).

    Google Scholar 

  34. M. A. Basrai, M. A. Lubkowitz, J. R. Perry, D. Miller, E. Krainer, F. Naider, and J. M. Becker. Microbiol. 141:1147–1156 (1995).

    Google Scholar 

  35. J. R. Perry, M. A. Basrai, H.-Y. Steiner, F. Naider, and J. M. Becker. Mol. Cell. Biol. 14:104–115 (1994).

    Google Scholar 

  36. H. J. Sofia, V. Burland, D. L. Daniels, G. Plunkett III, and F. R. Blattner. Nucleic Acids Res. 22:2576–2586 (1994).

    Google Scholar 

  37. V. Burland, G. Plunkett III, H. J. Sofia, D. L. Daniels, and F. R. Blattner. Nucl. Acids Res. 23:2105–2119 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graul, R.C., Sadée, W. Sequence Alignments of the H+-Dependent Oligopeptide Transporter Family PTR: Inferences on Structure and Function of the Intestinal PET1 Transporter. Pharm Res 14, 388–400 (1997). https://doi.org/10.1023/A:1012070726480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012070726480

Navigation