Skip to main content
Log in

Influence of Different Fat Emulsion-Based Intravenous Formulations on the Pharmacokinetics and Pharmacodynamics of Propofol

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The influence of different intravenous formulations on the pharmacokinetics and pharmacodynamics of propofol was investigated using the effect on the EEG (11.5-30 Hz) as pharmacodynamic endpoint.

Methods. Propofol was administered as an intravenous bolus infusion (30 mg/kg in 5 min) or as a continuous infusion (150 mg/kg in 5 hours) in chronically instrumented male rats. Propofol was formulated as a 1% emulsion in an Intralipid 10%®-like fat emulsion (Diprivan-10®, D) or as a 1%- or 6% emulsion in Lipofundin® MCT/LCT-10% (Pl% and P6%, respectively). EEG was recorded continuously and arterial blood samples were collected serially for the determination of propofol concentrations using HPLC.

Results. Following bolus infusion, the pharmacokinetics of the various propofol emulsions could adequately be described by a two-compart-mental pharmacokinetic model. The average values for clearance (Cl), volume of distribution at steady-state (Vd,ss) and terminal half-life (t1/2, λ2) were 107 ± 4 ml/min/kg, 1.38 ± 0.06 l/kg and 16 ± 1 min, respectively (mean ± S.E., n = 22). No significant differences were observed between the three propofol formulations. After continuous infusion these values were 112 ± 11 ml/min/kg, 5.19 ± 0.41 l/kg and 45 ± 3 min, respectively (mean±S.E., n = 20) with again no statistically significant differences between the three propofol formulations. Comparison between the bolus- and the continuous infusion revealed a statistically significant difference for both Vd,ss and t1/2, λ2 (p < 0.05), whereas Cl remained unchanged. In all treatment groups infusion of propofol resulted in a burst-suppression type of EEG. A profound hysteresis loop was observed between blood concentrations and EEG effect for all formulations. The hysteresis was minimized by a semi-parametric method and resulted in a biphasic concentration-effect relationship of propofol that was described non-parametrically. For P6% a larger rate constant onset of drug effect (t,1/2, keo) was observed compared to the other propofol formulations (p<0.05).

Conclusions. The pharmacokinetics and pharmacodynamics of propofol are not affected by to a large extent the type of emulsion nor by the concentration of propofol in the intravenous formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. M. Bryson, B. R. Fulton, and D. Faulds. Propofol: an update on its use in anesthesia and conscious sedation. Drugs 50:513–559 (1995).

    PubMed  Google Scholar 

  2. M. Lindholm. Critically ill patients and fat emulsions. Minerva. Anestesiol. 58:875–879 (1992).

    PubMed  Google Scholar 

  3. V. S. Koster, J. G. Maring, C. A. J. Knibbe, R. Lange, P. F. M. Kuks, J. J. M. Langemeijer, L. P. H. J. Aarts, H. Talsma, and L. Lie-A-Huen. Propofol-6%: preparation and stability of a new formulation of propofol. J. Pharm. Sci. in press (1998).

  4. J. Bable, A. Doenicke, and V. Monch. New formulation of propofol in an LCT/MCT emulsion: approach to reduce pain on injection. EHP 1:15–22 (1995).

    Google Scholar 

  5. A. Tibell, A. Lindholm, J. Sawe, G. Chen, and B. Norrlind. Cyclosporin A in fat emulsion carriers: experimental studies on pharmacokinetics and tissue distribution. Pharmacol. Toxicol. 76:115–121 (1995).

    PubMed  Google Scholar 

  6. A. Sparreboom, O. van Tellingen, W. J. Nooijen, and J. H. Beijnen. Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res. 56:2112–2115 (1996).

    PubMed  Google Scholar 

  7. L. K. Webster, E. J. Cosson, K. H. Stokes, and M. J. Millward. Effect of the paclitaxel vehicle, Cremophor EL, on the pharmacokinetics of doxorubicin and doxorubicinol in mice. Br. J. Cancer 73:522–524 (1996).

    PubMed  Google Scholar 

  8. D. J. Straathof, O. Driessen, J. W. Meijer, H. Van Rees, P. Vermeij, and T. A. Vermeij. Influence of Intralipid infusion on the elimination of phenytoin. Arch. Int. Pharmacodyn. Ther. 267:180–186 (1984).

    PubMed  Google Scholar 

  9. J. W. Mandema and M. Danhof. Pharamcokinetic-pharmacodynamic modelling of the CNS effects of heptabarbital using aperiodic EEG analysis. J. Pharmacokin. Biopharm. 18:459–481 (1990).

    Google Scholar 

  10. E. H. Cox, A. G. N. Van Hemert, E. Tukker, and M. Danhof. Pharmacokinetic-pharmacodynamic modelling of the EEG effect of alfentanil. J. Pharmacol. Toxicol. Methods, 38:99–108 (1997).

    PubMed  Google Scholar 

  11. C. A. J. Knibbe, V. S. Koster, V. H. M. Deneer, R. Stuurman, P. F. M. Kuks, and R. Lange. Determination of propofol in low volume samples by high-performance liquid chromatography with fluorescence detection. J. Chrom., in press (1998).

  12. D. Verotta and L. B. Sheiner. Simultaneous modelling of pharmacokinetics and pharmacodynamics II. An improved algorithm. Comp. Applicat. Biosci. 3:345–349 (1987).

    Google Scholar 

  13. W. F. Ebling, M. Danhof, and D. R. Stanski. Pharmacodynamic characterization of the electroencephalographic effects of thiopental in J. Pharmacokin. Biopharm. 19:123–143 (1991).

    Google Scholar 

  14. B. Fulton and E. M. Sorkin. Propofol. An overview of its pharmacology and a review of its clinical efficacy in intensive care sedation. Drugs 50:636–657 (1995).

    PubMed  Google Scholar 

  15. H. K. Adam, J. B. Glen, and P. A. Hoyle. Pharmacokinetics in laboratory animals of ICI 35 868, a new i.v. anaesthetic agent. Br. J. Anaesth. 52:743–746 (1980).

    PubMed  Google Scholar 

  16. S. Dutta, Y. Matsumoto, and W. F. Ebling. Role of intralipid in the pharmacokinetics and pharmacodynamics of propofol in rats. Pharm. Res. 12:S401 (1995).

    Google Scholar 

  17. S. Dutta, Y. Matsumoto, N. U. Gothgen, and W. F. Ebling. Concentration-EEG effect relationship of propofol in rats. J. Pharm. Sci. 86:37–43 (1997).

    PubMed  Google Scholar 

  18. I. D. Cockshott, E. J. Douglas, G. F. Plummer, and P. J. Simons. The pharmacokinetics of propofol in laboratory animals. Xenobiotica 22:369–375 (1992).

    PubMed  Google Scholar 

  19. K. Leslie, D. I. Sessler, A. R. Bjorksten, and A. Moayeri. Mild hypothermia alters propofol pharmacokinetics and increases the duratio of action of atracurium. Anesth. Analg. 80:1007–1014 (1995).

    PubMed  Google Scholar 

  20. J. Dingemanse, M. Danhof, and D. D. Breimer. Pharmacokinetic-pharmacodynamic modelling of CNS drug effects. An overview. Pharmacol. Ther. 38:1–52 (1988).

    PubMed  Google Scholar 

  21. J. W. Mandema, E. Tukker, and M. Danhof. Pharmacokinetic-pharmacodynamic modelling of the EEG effects of midazolam in individual rats: influence of rate and route of administration. Br. J. Pharmacol. 102:663–668 (1991).

    PubMed  Google Scholar 

  22. J. W. Mandema, C. D. Heijligers-Feijen, E. Tukker, A. G. De Boer, and M. Danhof. Modeling of the effect site equilibration kinetics and pharmacodynamics of racemic baclofen and its enantiomers using quantitative EEG effect measures. J. Pharmacol. Exp. Ther. 261:88–95 (1992).

    PubMed  Google Scholar 

  23. K. Tomoda, K. Shingu, M. Osawa, M. Murakawa, and K. Mori. Comparison of CNS effects of propofol and thiopentone in cats. Br. J. Anaesth. 71:383–387 (1993).

    PubMed  Google Scholar 

  24. K. Hartikainen, M. Rorarius, K. Makela, A. Yli-Hankala, and V. Jantti. Propofol and isoflurane induced EEG burst suppression patterns in rabbits. Acta Anaesthesiol. Scand. 39:814–818 (1995).

    PubMed  Google Scholar 

  25. R. V. Reddy, S. S. Moorthy, T. Mattice, S. F. Dierdorf, and R. D. Deitch, Jr. An electroencephalographic comparison of effects of propofol and methohexital. Electroencephalogr. Clin. Neurophysiol. 83:162–168 (1992).

    PubMed  Google Scholar 

  26. F. C. Forrest, M. A. Tooley, P. R. Saunders, and C. Prys-Roberts. Propofol infusion and the suppression of consciousness: the EEG and dose Br. J. Anaesth. 72:35–41 (1994).

    PubMed  Google Scholar 

  27. J. W. Mandema, P. Veng-Pedersen, and M. Danhof. Estimation of amobarbital plasma-effect site equilibration kinetics. Relevance of poly-exponential conductance functions. J. Pharmacokin. Biopharm. 19:617–634 (1991).

    Google Scholar 

  28. P. Altmayer, U. Buch, and H. P. Buch. Propofol binding to human blood proteins. Arzneimittelforschung 45:1053–1056 (1995).

    PubMed  Google Scholar 

  29. P. M. Klockowski and G. Levy. Kinetics of drug action in disease states. XXIII: Effect of acute hypovolemia on the pharmacodynamics of phenobarbital in. rats J. Pharm. Sci. 77:365–366 (1988).

    PubMed  Google Scholar 

  30. E. Vandermeersch, J. Van Hemelrijck, G. Byttebier, and H. Van Aken. Pharmacokinetics of propofol during continuous infusion for pediatric anesthesia. Acta Anaesthesiol. Belg. 40:161–165 (1989).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, E.H., Knibbe, C.A.J., Koster, V.S. et al. Influence of Different Fat Emulsion-Based Intravenous Formulations on the Pharmacokinetics and Pharmacodynamics of Propofol. Pharm Res 15, 442–448 (1998). https://doi.org/10.1023/A:1011980432646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011980432646

Navigation