Skip to main content
Log in

Effects of Intestinal and Hepatic Metabolism on the Bioavailability of Tacrolimus in Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Tacrolimus, an immunosuppressive agent, has poor and variable bioavailability following oral administration in clinical use. We investigated the contribution of intestinal metabolism to the first pass effect of tacrolimus in rats.

Methods. Tacrolimus was administered intravenously, intraportally or intraintestinally to rats. Blood samples were collected over a 240-min period, and blood tacrolimus concentrations were measured. The extraction ratios of tacrolimus in the intestine and liver were investigated. In addition, the metabolism of tacrolimus in the everted sacs of the small intestine was examined.

Results. The rate of absorption of tacrolimus in the intestine was rapid, and tacrolimus was almost completely absorbed after intestinal administration. The bioavailability of tacrolimus was about 40% and 25% after intraportal and intraintestinal administration, respectively, indicating that tacrolimus is metabolized in both the intestine and the liver. In addition, tacrolimus was significantly metabolized in the everted sacs of the rat intestine.

Conclusions. The present study suggested that the metabolism of tacrolimus in the intestine contributes to its extensive and variable first pass metabolism following the oral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. Venkataramanan, A. Swaminathan, T. Prasad, A. Jain, S. Zuckerman, V. Warty, J. McMichael, J. Lever, G. Burckart, and T. Starzl. Clinical pharmacokinetics of tacrolimus. Clin. Pharmacokinet. 29:404-430 (1995).

    PubMed  Google Scholar 

  2. M. Yasuhara, T. Hashida, M. Toraguchi, Y. Hashimoto, M. Kimura, K. Inui, R. Hori, Y. Inomata, K. Tanaka, and Y. Yamaoka. Pharmacokinetics and pharmacodynamics of FK 506 in pediatric patients receiving living-related donor liver transplantations. Transplant. Proc. 27:1108-1110 (1995).

    PubMed  Google Scholar 

  3. H. Sasa, Y. Hashimoto, T. Shimizu, and K. Inui. Hepatic extraction of tacrolimus in rats with experimental liver diseases. Biol. Pharm. Bull. in press.

  4. M. Sattler, F. P. Guengerich, C. Yun, U. Christians, and K. F. Sewing. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab. Dispos. 20:753-761 (1992).

    PubMed  Google Scholar 

  5. J. C. Kolars, P. L. Stetson, B. D. Rush, M. J. Ruwart, P. Schmiedlin-Ren, E. A. Duell, J. J. Voorhees, and P. B. Watkins. Cyclosporine metabolism by P450IIIA in rat enterocytes—another determinant of oral bioavailability? Transplantation 53:596-602 (1992).

    PubMed  Google Scholar 

  6. L. C. Floren, I. Bekersky, L. Z. Benet, Q. Mekki, D. Dressler, J. W. Lee, J. P. Roberts, and M. F. Hebert. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin. Pharmacol. Ther. 62:41-49 (1997).

    PubMed  Google Scholar 

  7. A. Lampen, U. Christians, A. K. Gonschior, A. Bader, I. Hackbarth, W. von Engelhardt, and K. F. Sewing. Metabolism of the macrolide immunosuppressant, tacrolimus, by the pig gut mucosa in the Ussing chamber. Br. J. Pharmacol. 117:1730-1734 (1996).

    PubMed  Google Scholar 

  8. T. H. Wilson and G. Wiseman. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J. Physiol. 123:116-125 (1954).

    PubMed  Google Scholar 

  9. F. C. Grenier, J. Luczkiw, M. Bergmann, S. Lunetta, M. Morrison, D. Blonski, K. Shoemaker, and M. Kobayashi. A whole blood FK 506 assay for the IMx® analyzer. Transplant. Proc. 23:2748-2749 (1991).

    PubMed  Google Scholar 

  10. S. L. Beal and L. B. Sheiner. NONMEM Users Guide, University of California, San Francisco, 1992

    Google Scholar 

  11. N. Holtbecker, M. F. Fromm, H. K. Kroemer, E. E. Ohnhaus, and H. Heidemann. In vivo assessment of intestinal drug metabolism: Reply. Drug Metab. Dispos. 25:1110-1111 (1997).

    Google Scholar 

  12. K. S. Lown, R. R. Mayo, A. B. Leichtman, H. Hsiao, D. K. Turgeon, P. Schmiedlin-Ren, M. B. Brown, W. Guo, S. J. Rossi, L. Z. Benet, and P. B. Watkins. Role of intestinal P-glycoprotein (mdrl) in interpatient variation in the oral bioavailability of cyclosporine. Clin. Pharmacol. Ther. 62:248-260 (1997).

    PubMed  Google Scholar 

  13. D. Y. Gomez, V. J. Wacher, S. J. Tomlanovich, M. F. Hebert, and L. Z. Benet. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin. Pharmacol. Ther. 58:15-19 (1995).

    PubMed  Google Scholar 

  14. K. E. Thummel, D. O'Shea, M. F. Paine, D. D. Shen, K. L. Kunze, J. D. Perkins, and G. R. Wilkinson. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin. Pharmacol. Ther. 59:491-502 (1996).

    PubMed  Google Scholar 

  15. M. F. Fromm, D. Busse, H. K. Kroemer, and M. Eichelbaum. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 24:796-801 (1996).

    PubMed  Google Scholar 

  16. P. B. Watkins. The barrier function of CYP3A4 and P-glycoprotein in the small bowel. Adv. Drug Delivery Rev. 27:161-170(1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, Y., Sasa, H., Shimomura, M. et al. Effects of Intestinal and Hepatic Metabolism on the Bioavailability of Tacrolimus in Rats. Pharm Res 15, 1609–1613 (1998). https://doi.org/10.1023/A:1011967519752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011967519752

Navigation