Immunity
Volume 50, Issue 1, 15 January 2019, Pages 253-271.e6
Journal home page for Immunity

Resource
Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes

https://doi.org/10.1016/j.immuni.2018.11.004Get rights and content
Under an Elsevier user license
open archive

Highlights

  • Mouse microglia are heterogenous cells that are most diverse in the developing brain

  • Unique microglia transcriptional states can be localized to many brain regions

  • Small subsets of varied inflammatory microglia found in the aged brain

  • Diverse activated microglia subpopulations found in mouse demyelinated lesions and human MS

Summary

Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states—including chemokine-enriched inflammatory microglia—persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease.

Keywords

microglia
heterogeneity
single-cell RNA seq
glia
development
demyelination
diversity
brain
injury
activation

Cited by (0)

9

Lead Contact