Skip to main content

Advertisement

Log in

Sirt1 Promotes Axonogenesis by Deacetylation of Akt and Inactivation of GSK3

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating evidence shows that Sirt1 regulates a variety of neurological functions through the deacetylation of many proteins besides histone; however, the literature on the relationship between Sirt1 and axonal outgrowth is limited. Here, we first demonstrated that Sirt1 was located in the axon, especially in the growth cone. Then, we found that genetic inhibition of Sirt1 retarded axonal development in embryonic hippocampal neurons, whereas genetic and pharmacologic upregulation of Sirt1 promoted not only the formation but also the elongation of axons. Sirt1 can deacetylate and thus activate Akt, and inhibition of Akt significantly reversed the axonogenesis induced by Sirt1 overexpression. We also found that Sirt1 inhibited the activity of glycogen synthase kinase 3 (GSK3), whereas activation of GSK3 could abolish the effect of Sirt1. These results suggest that Sirt1 promotes axonogenesis by deacetylating Akt and thereby activates the Akt/GSK3 pathway, which could be a promising therapeutic target for axonopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13:324–331

    Article  CAS  PubMed  Google Scholar 

  3. Kim MJ, Ahn K, Park SH, Kang HJ, Jang BG, Oh SJ, Oh SM, Jeong YJ, Heo JI, Suh JG, Lim SS, Ko YJ, Huh SO, Kim SC, Park JB, Kim J, Kim JI, Jo SA, Lee JY (2009) SIRT1 regulates tyrosine hydroxylase expression and differentiation of neuroblastoma cells via FOXO3a. FEBS Lett 583:1183–1188

    Article  CAS  PubMed  Google Scholar 

  4. Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, Sato M, Horio Y (2008) Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci U S A 105:15599–15604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schroter F, Ninnemann O, Siegert E, Bendix I, Brustle O, Nitsch R, Zipp F, Aktas O (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10:385–394

    Article  CAS  PubMed  Google Scholar 

  6. Raval AP, Lin HW, Dave KR, Defazio RA, Della Morte D, Kim EJ, Perez-Pinzon MA (2008) Resveratrol and ischemic preconditioning in the brain. Curr Med Chem 15:1545–1551

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280:40364–40374

    Article  CAS  PubMed  Google Scholar 

  8. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754

    Article  CAS  PubMed  Google Scholar 

  9. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179

    Article  CAS  PubMed  Google Scholar 

  10. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Michan S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W, Mervis RF, Chen J, Guerin KI, Smith LE, McBurney MW, Sinclair DA, Baudry M, de Cabo R, Longo VD (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30:9695–9707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Craig AM, Banker G (1994) Neuronal polarity. Annu Rev Neurosci 17:267–310

    Article  CAS  PubMed  Google Scholar 

  14. Hirschberg K, Zisling R, van Echten-Deckert G, Futerman AH (1996) Ganglioside synthesis during the development of neuronal polarity. Major changes occur during axonogenesis and axon elongation, but not during dendrite growth or synaptogenesis. J Biol Chem 271:14876–14882

    Article  CAS  PubMed  Google Scholar 

  15. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  16. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Johnson CA, Turner BM (1999) Histone deacetylases: complex transducers of nuclear signals. Semin Cell Dev Biol 10:179–188

    Article  CAS  PubMed  Google Scholar 

  18. Sadoul K, Boyault C, Pabion M, Khochbin S (2008) Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 90:306–312

    Article  CAS  PubMed  Google Scholar 

  19. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, Odum N (2005) Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 65:11136–11145

    Article  CAS  PubMed  Google Scholar 

  21. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120:137–149

    Article  CAS  PubMed  Google Scholar 

  22. Baki L, Shioi J, Wen P, Shao Z, Schwarzman A, Gama-Sosa M, Neve R, Robakis NK (2004) PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J 23:2586–2596

    Article  CAS  PubMed  Google Scholar 

  23. Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, Wang JZ (2012) AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol Aging 33:1400–1410

    Article  PubMed  Google Scholar 

  24. Zhu LQ, Zheng HY, Peng CX, Liu D, Li HL, Wang Q, Wang JZ (2010) Protein phosphatase 2A facilitates axonogenesis by dephosphorylating CRMP2. J Neurosci 30:3839–3848

    Article  CAS  PubMed  Google Scholar 

  25. Li XH, Xie JZ, Jiang X, Lv BL, Cheng XS, Du LL, Zhang JY, Wang JZ, Zhou XW (2012) Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation. Neuromolecular Med 14:338–348

    Article  CAS  PubMed  Google Scholar 

  26. Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41:375–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M, Gupta MP (2011) The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal 4:ra46

    CAS  PubMed  Google Scholar 

  28. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105:3374–3379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Koren J 3rd, Jinwal UK, Davey Z, Kiray J, Arulselvam K, Dickey CA (2011) Bending tau into shape: the emerging role of peptidyl-prolyl isomerases in tauopathies. Mol Neurobiol 44:65–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013

    Article  CAS  PubMed  Google Scholar 

  31. Kohn AD, Takeuchi F, Roth RA (1996) Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 271:21920–21926

    Article  CAS  PubMed  Google Scholar 

  32. Rebecchi MJ, Scarlata S (1998) Pleckstrin homology domains: a common fold with diverse functions. Annu Rev Biophys Biomol Struct 27:503–528

    Article  CAS  PubMed  Google Scholar 

  33. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11:539–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Brown A, Slaughter T, Black MM (1992) Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. J Cell Biol 119:867–882

    Article  CAS  PubMed  Google Scholar 

  35. Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 42:897–912

    Article  CAS  PubMed  Google Scholar 

  36. Hensley K, Venkova K, Christov A, Gunning W, Park J (2011) Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 43:180–191

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Scientific Fund of China (81271392) and the Fund of Affiliated Hospital of Logistics College of Chinese People’s Armed Police Forces (FYM201219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Zhang.

Additional information

Xiao-hong Li and Chong Chen contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Xh., Chen, C., Tu, Y. et al. Sirt1 Promotes Axonogenesis by Deacetylation of Akt and Inactivation of GSK3. Mol Neurobiol 48, 490–499 (2013). https://doi.org/10.1007/s12035-013-8437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8437-3

Keywords

Navigation