Skip to main content

Advertisement

Log in

Preclinical Studies on Neurobehavioral and Neuromuscular Effects of Cocaine Hydrolase Gene Therapy in Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cocaine hydrolase gene transfer of mutated human butyrylcholinesterase (BChE) is evolving as a promising therapy for cocaine addiction. BChE levels after gene transfer can be 1,500-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. Because mutated BChE is approximately 70 % as efficient in hydrolyzing acetylcholine as wild-type enzyme, it is important to examine the impact on cholinergic function. Here, we focused on memory and cognition (Stone T-maze), basic neuromuscular function (treadmill endurance and grip strength), and coordination (Rotarod). BALB/c mice were given adeno-associated virus vector or helper-dependent adenoviral vector encoding mouse or human BChE optimized for cocaine. Age-matched controls received saline or luciferase vector. Despite high doses (up to 1013 particles per mouse) and high transgene expression (1,000-fold above baseline), no deleterious effects of vector treatment were seen in neurobehavioral functions. The vector-treated mice performed as saline-treated and luciferase controls in maze studies and strength tests, and their Rotarod and treadmill performance decreased less with age. Thus, neither the viral vectors nor the large excess of BChE caused observable toxic effects on the motor and cognitive systems investigated. This outcome justifies further steps toward an eventual clinical trial of vector-based gene transfer for cocaine abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anglister L, Eichler J, Szabo M, Haesaert B, Salpeter MM (1998) 125I-labeled fasciculin 2: a new tool for quantitation of acetylcholinesterase densities at synaptic sites by EM-autoradiography. J Neurosci Methods 81:63–71

    Article  CAS  PubMed  Google Scholar 

  • Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D (2012) Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481:81–84

    Article  CAS  Google Scholar 

  • Ben Assayag E, Shenhar-Tsarfaty S, Ofek K, Soreq L, Bova I, Shopin L, Berg RMG, Berliner S, Shapira I, Bornstein NM, Soreq H (2010) Serum cholinesterase activities distinguish between stroke patients and controls and predict 12-month mortality. Mol Med 16:276–286

    Google Scholar 

  • Brimijoin S, Shen ML, Sun H (2002) Radiometric solvent-partitioning assay for screening cocaine hydrolases and measuring cocaine levels in milligram tissue samples. Anal Biochem 309:200–205

    Article  CAS  PubMed  Google Scholar 

  • Brimijoin S, Orson F, Kosten TR, Kinsey B, Shen XY, White SJ, Gao Y (2013) Anti-cocaine antibody and butyrylcholinesterase-derived cocaine hydrolase exert cooperative effects on cocaine pharmacokinetics and cocaine-induced locomotor activity in mice. Chem-Biol Interact 203:212–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duysen EG, Li B, Darvesh S, Lockridge O (2007) Sensitivity of butyrylcholinesterase knockout mice to (−−)-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer's disease drugs and indicates butyrylcholinesterase function in neurotransmission. Toxicology 233:60–69

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Geng L, Orson F, Kinsey B, Kosten TR, Shen X, Brimijoin S (2013) Effects of anti-cocaine vaccine and viral gene transfer of cocaine hydrolase in mice on cocaine toxicity including motor strength and liver damage. Chem-Biol Interact 203:208–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geng L, Gao Y, Chen X, Hou S, Zhan CG, Radic Z, Parks RJ, Russell SJ, Pham L, Brimijoin S (2013) Gene transfer of mutant mouse cholinesterase provides high lifetime expression and reduced cocaine responses with no evident toxicity. PLoS One 8:e67446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12:217–222

    Article  CAS  PubMed  Google Scholar 

  • Johnson CD, Russell RL (1975) A rapid simple radiometric assay for cholinesterase, suitable for multiple determinations. Anal Biochem 64:229–238

    Article  CAS  PubMed  Google Scholar 

  • Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE (1997) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77:1325–1337

    CAS  PubMed  Google Scholar 

  • Kim IH, Jozkowicz A, Piedra PA, Oka K, Chan L (2001) Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci U S A 98:13282–13287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lenz DE, Maxwell DM, Koplovitz I, Clark CR, Capacio BR, Cerasoli DM, Federko JM, Luo C, Saxena A, Doctor BP, Olson C (2005) Protection against soman or VX poisoning by human butyrylcholinesterase in guinea pigs and cynomolgus monkeys. Chem-Biol Interact 157–158:205–210

    Article  PubMed  Google Scholar 

  • Li B, Stribley JA, Ticu A, Xie W, Schopfer LM, Hammond P, Brimijoin S, Hinrichs SH, Lockridge O (2000) Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem 75:1320–1331

    Article  CAS  PubMed  Google Scholar 

  • Li B, Duysen EG, Carlson M, Lockridge O (2008) The butyrylcholinesterase knockout mouse as a model for human butyrylcholinesterase deficiency. J Pharmacol Exp Ther 324:1146–1154

    Article  CAS  PubMed  Google Scholar 

  • Manoharan I, Wieseler S, Layer PG, Lockridge O, Boopathy R (2006) Naturally occurring mutation Leu307Pro of human butyrylcholinesterase in the Vysya community of India. Pharmacogenet Genomics 16:461–468

    CAS  PubMed  Google Scholar 

  • Manoharan I, Boopathy R, Darvesh S, Lockridge O (2007) A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin Chim Acta 378:128–135

    Article  CAS  PubMed  Google Scholar 

  • Massaquoi SG, Hallett M (1998) Ataxia and other cerebellar syndromes. Parkinson's disease and movement disorders. Williams & Wilkins, Baltimore, pp 623–86

    Google Scholar 

  • Miyagi N, Rao VP, Ricci D, Du Z, Byrne GW, Bailey KR, Nakai H, Russell SJ, McGregor CG (2008) Efficient and durable gene transfer to transplanted heart using adeno-associated virus 9 vector. J Heart Lung Transplant 27:554–560, The Official Publication of the International Society for Heart Transplantation

    Article  PubMed Central  PubMed  Google Scholar 

  • Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL (1996) A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A 93:13565–13570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pistell PJ, Ingram DK (2010) Development of a water-escape motivated version of the Stone T-maze for mice. Neuroscience 166:61–72

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Sun W, Luo C, Doctor BP (2005) Human serum butyrylcholinesterase: in vitro and in vivo stability, pharmacokinetics, and safety in mice. Chem-Biol Interact 157–158:199–203

    Article  PubMed  Google Scholar 

  • Saxena A, Sun W, Fedorko JM, Koplovitz I, Doctor BP (2011) Prophylaxis with human serum butyrylcholinesterase protects guinea pigs exposed to multiple lethal doses of soman or VX. Biochem Pharmacol 81:164–169

    Article  CAS  PubMed  Google Scholar 

  • Schirmer JM, Miyagi N, Rao VP, Ricci D, Federspiel MJ, Kotin RM, Russell SJ, McGregor CG (2007) Recombinant adeno-associated virus vector for gene transfer to the transplanted rat heart. Transplant International 20:550–557, Official Journal of the European Society for Organ Transplantation

    Article  CAS  PubMed  Google Scholar 

  • Silver A (1974) The biology of cholinesterases. Elsevier-North Holland, Amsterdam, pp 67–98

    Google Scholar 

  • Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8:573–587

    Article  CAS  PubMed  Google Scholar 

  • Weber A, Butterweck H, Mais-Paul U, Teschner W, Lei L, Muchitsch EM, Kolarich D, Altmann F, Ehrlich HJ, Schwarz HP (2011) Biochemical, molecular and preclinical characterization of a double-virus-reduced human butyrylcholinesterase preparation designed for clinical use. Vox Sanguinis 100:285–297

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Xue L, Fang L, Chen X, Zhan CG (2010) Characterization of a high-activity mutant of human butyrylcholinesterase against (−)-cocaine. Chem-Biol Interact 187:148–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng F, Yang W, Ko MC, Liu J, Cho H, Gao D, Tong M, Tai HH, Woods JH, Zhan CG (2008) Most efficient cocaine hydrolase designed by virtual screening of transition states. J Am Chem Soc 130:12148–12155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH–NIDA grants RO1DA23979 and DP1DA31340.

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Brimijoin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, V., Gao, Y., Geng, L. et al. Preclinical Studies on Neurobehavioral and Neuromuscular Effects of Cocaine Hydrolase Gene Therapy in Mice. J Mol Neurosci 53, 409–416 (2014). https://doi.org/10.1007/s12031-013-0130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0130-5

Keywords

Navigation