Skip to main content
Log in

Nicotine Modulates the Renin–Angiotensin System of Cultured Neurons and Glial Cells from Cardiovascular Brain Areas of Wistar Kyoto and Spontaneously Hypertensive Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Considering the importance of the renin–angiotensin system (RAS) for the central control of blood pressure and that nicotine increases the probability of development of hypertension associated to genetic predisposition, our aims are (1) to determine RAS in cultured neurons and glia from the brainstem and hypothalamus of spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats; (2) to analyze the possibility of nicotine to interact with brain RAS; and (3) to hypothesize any contribution of nicotine and RAS to the development of neurogenic hypertension. This study demonstrated physiological differences in RAS between cultured neuronal and glial cells from the brainstem and hypothalamus of SHR and WKY neonate rats. Our study also featured evidences of direct modulation of the RAS by nicotine in neurons and glia of brainstem and hypothalamus, which seems to be differential between the two rat strains. Such modulation gives us a clue about the mechanisms possibly involved in the genesis of neurogenic hypertension in vivo, for example, increase in angiotensin II type 1 receptor binding and decrease in angiotensin-converting enzyme 2. In conclusion, we demonstrated that neuronal and glial RAS from the brainstem and hypothalamus of SHR differ from WKY rats and nicotine differentially modulates the brain RAS in SHR and WKY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bains, J. S., Potyok, A., & Ferguson, A. V. (1992). Angiotensin II actions in paraventricular nucleus: Functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Research, 599, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Bancroft, A., & Levin, E. D. (2000). Ventral hippocampal alpha4beta2 nicotinic receptors and chronic nicotine effects on memory. Neuropharmacology, 39, 2770–2778.

    Article  PubMed  CAS  Google Scholar 

  • Belluardo, N., Mudo, G., Blum, M., & Fuxe, K. (2000). Central nicotinic receptors, neurotrophic factors and neuroprotection. Behavioural Brain Research, 113, 21–34.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Britto, R. R., Santos, R. A., Fagundes-Moura, C. R., Khosla, M. C., & Campagnole-Santos, M. J. (1997). Role of angiotensin-(1–7) in the modulation of the baroreflex in renovascular hypertensive rats. Hypertension, 30, 549–556.

    PubMed  CAS  Google Scholar 

  • Buccafusco, J. J., & Magri, V. (1990). The pressor response to spinal cholinergic stimulation in spontaneously hypertensive rats. Brain Research Bulletin, 25, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Buccafusco, J. J., & Yang, X. (1993). Mechanism of the hypertensive response to central injection of nicotine in conscious rats. Brain Research Bulletin, 32, 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, T. H., Bergamaschi, C. T., Lopes, O. U., & Campos, R. R. (2003). Role of endogenous angiotensin II on glutamatergic actions in the rostral ventrolateral medulla in Goldblatt hypertensive rats. Hypertension, 42, 707–712.

    Article  PubMed  CAS  Google Scholar 

  • Chan, R. K., Chan, Y. S., & Wong, T. M. (1991). Responses of cardiovascular neurons in the rostral ventrolateral medulla of the normotensive Wistar Kyoto and spontaneously hypertensive rats to iontophoretic application of angiotensin II. Brain Research, 556, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Cote, F., Do, T. H., Laflamme, L., Gallo, J. M., & Gallo-Payet, N. (1999). Activation of the AT(2) receptor of angiotensin II induces neurite outgrowth and cell migration in microexplant cultures of the cerebellum. Journal of Biological Chemistry, 274, 31686–31692.

    Article  PubMed  CAS  Google Scholar 

  • Dajas-Bailador, F., & Wonnacott, S. (2004). Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends in Pharmacological Science, 25, 317–324.

    Article  CAS  Google Scholar 

  • Dzau, V. J. (1989). Short- and long-term determinants of cardiovascular function and therapy: Contributions of circulating and tissue renin–angiotensin systems. Journal of Cardiovascular Pharmacology, 14(Suppl 4), S1–S5.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, M. F. R., & Fior-Chadi, D. R. (2007). Chronic nicotine administration. Analysis of the development of hypertension and glutamate neurotransmission. Brain Research Bulletin, 72(4–6), 215–224. DOI 10.1016/j.brainresbull.2006.1009.1013.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira, A. J., & Santos, R. A. (2005). Cardiovascular actions of angiotensin-(1–7). Brazilian Journal of Medical and Biological Research, 38, 499–507.

    PubMed  CAS  Google Scholar 

  • Fishman, M. C., Zimmerman, E. A., & Slater, E. E. (1981). Renin and angiotensin: The complete system within the neuroblastoma × glioma cell. Science, 214, 921–923.

    Article  PubMed  CAS  Google Scholar 

  • Fogarty, D. J., & Matute, C. (2001). Angiotensin receptor-like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes. Glia, 35, 131–146.

    Article  PubMed  CAS  Google Scholar 

  • Fornes, P., Richer, C., Vacher, E., Bruneval, P., & Giudicelli, J. F. (1993). Losartan’s protective effects in stroke-prone spontaneously hypertensive rats persist durably after treatment withdrawal. Journal of Cardiovascular Pharmacology, 22, 305–313.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson, K., Lindvall, O., Ingemarsson, I., Astedt, B., Cronqvist, S., & Holtas, S. (1989). Repeated cranial computed tomographic and magnetic resonance imaging scans in two cases of eclampsia. Stroke, 20, 547–553.

    PubMed  CAS  Google Scholar 

  • Gorbea-Oppliger, V. J., Melaragno, M. G., Potter, G. S., Petit, R. L., & Fink, G. D. (1994). Time course of losartan blockade of angiotensin II hypertension versus blockade of angiotensin II fast pressor effects. Journal of Pharmacology and Experimental Therapeutics, 271, 804–810.

    PubMed  CAS  Google Scholar 

  • Greenberg, M. E., Ziff, E. B., & Greene, L. A. (1986). Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science, 234, 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Grilli, M., Parodi, M., Raiteri, M., & Marchi, M. (2005). Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release. Journal of Neurochemistry, 93, 1353–1360.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. E., Mizelle, H. L., & Woods, L. L. (1986). The renin–angiotensin system and long-term regulation of arterial pressure. Journal de l’Hypertension, 4, 387–397.

    Article  CAS  Google Scholar 

  • Ichiki, T., Labosky, P. A., Shiota, C., et al. (1995). Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature, 377, 748–750.

    Article  PubMed  CAS  Google Scholar 

  • Khan, I. M., Printz, M. P., Yaksh, T. L., & Taylor, P. (1994). Augmented responses to intrathecal nicotinic agonists in spontaneous hypertension. Hypertension, 24, 611–619.

    PubMed  CAS  Google Scholar 

  • Kohara, K., Brosnihan, K. B., & Ferrario, C. M. (1993). Angiotensin(1–7) in the spontaneously hypertensive rat. Peptides, 14, 883–891.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., & Misu, Y. (1981). Pharmacological characterisation of the alpha-adrenoceptors responsible for a decrease of blood pressure in the nucleus tractus solitarii of the rat. Naunyn Schmiedebergs Archives of Pharmacology, 317, 120–125.

    Article  CAS  Google Scholar 

  • Lasko, P. (2003). Gene regulation at the RNA layer: RNA binding proteins in intercellular signaling networks. Sci STKE, 2003, RE6.

  • Lassegue, B., Alexander, R. W., Nickenig, G., Clark, M., Murphy, T. J., & Griendling, K. K. (1995). Angiotensin II down-regulates the vascular smooth muscle AT1 receptor by transcriptional and post-transcriptional mechanisms: evidence for homologous and heterologous regulation. Molecular Pharmacology, 48, 601–609.

    PubMed  CAS  Google Scholar 

  • Le Magueresse, C., Safiulina, V., Changeux, J. P., & Cherubini, E. (2006). Nicotinic modulation of network and synaptic transmission in the immature hippocampus investigated with genetically modified mice. Journal of Physiology, 576, 533–546.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Culman, J., Hortnagl, H., et al. (2005). Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB Journal, 19, 617–619.

    PubMed  CAS  Google Scholar 

  • Li, Z., Iwai, M., Wu, L., et al. (2003). Role of AT2 receptor in the brain in regulation of blood pressure and water intake. American Journal of Physiology Heart and Circulatory Physiology, 284, H116–H121.

    PubMed  CAS  Google Scholar 

  • Li, M. D., Kane, J. K., Parker, S. L., McAllen, K., Matta, S. G., & Sharp, B. M. (2000). Nicotine administration enhances NPY expression in the rat hypothalamus. Brain Research, 867, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. M., Mogi, M., Tsukuda, K., et al. (2007). Angiotensin II-induced neural differentiation via angiotensin II type 2 (AT2) receptor-MMS2 cascade involving interaction between AT2 receptor-interacting protein and Src homology 2 domain-containing protein-tyrosine phosphatase 1. Molecular Endocrinology, 21, 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Lu, D., Yang, H., Lenox, R. H., & Raizada, M. K. (1998). Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons. Journal of Cell Biology, 142, 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Q., Zhu, Y. Z., & Wong, P. T. (2004). Angiotensin receptor gene expression in candesartan mediated neuroprotection. Neuroreport, 15, 2643–2646.

    Article  PubMed  CAS  Google Scholar 

  • Matta, S. G., Valentine, J. D., & Sharp, B. M. (1997). Nicotine activates NPY and catecholaminergic neurons in brainstem regions involved in ACTH secretion. Brain Research, 759, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • McKinley, M. J., Albiston, A. L., Allen, A. M., et al. (2003). The brain renin–angiotensin system: location and physiological roles. International Journal of Biochemistry and Cell Biology, 35, 901–918.

    Article  PubMed  CAS  Google Scholar 

  • Michelini, L. C., & Bonagamba, L. G. (1990). Angiotensin II as a modulator of baroreceptor reflexes in the brainstem of conscious rats. Hypertension, 15, I45–I50.

    PubMed  CAS  Google Scholar 

  • Morimoto, S., Cassell, M. D., & Sigmund, C. D. (2002). Glia- and neuron-specific expression of the renin–angiotensin system in brain alters blood pressure, water intake, and salt preference. Journal of Biological Chemistry, 277, 33235–33241.

    Article  PubMed  CAS  Google Scholar 

  • Neff, R. A., Humphrey, J., Mihalevich, M., & Mendelowitz, D. (1998). Nicotine enhances presynaptic and postsynaptic glutamatergic neurotransmission to activate cardiac parasympathetic neurons. Circulation Research, 83, 1241–1247.

    PubMed  CAS  Google Scholar 

  • Ota, M., Crofton, J. T., Toba, K., & Share, L. (1992). Effect on vasopressin release of microinjection of cholinergic agonists into the rat supraoptic nucleus. Proceedings of the Society for Experimental Biology and Medicine, 201, 208–214.

    PubMed  CAS  Google Scholar 

  • Pan, H. L. (2004). Brain angiotensin II and synaptic transmission. Neuroscientist, 10, 422–431.

    Article  PubMed  CAS  Google Scholar 

  • Raizada, M. K., Lu, D., Tang, W., Kurian, P., & Sumners, C. (1993). Increased angiotensin II type-1 receptor gene expression in neuronal cultures from spontaneously hypertensive rats. Endocrinology, 132, 1715–1722.

    Article  PubMed  CAS  Google Scholar 

  • Raizada, M. K., Phillips, M. I., Crews, F. T., & Sumners, C. (1987). Distinct angiotensin II receptor in primary cultures of glial cells from rat brain. Proceedings of the National Academy of Sciences of. the United States of America, 84, 4655–4659.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pallares, J., Quiroz, C. R., Parga, J. A., Guerra, M. J., & Labandeira-Garcia, J. L. (2004). Angiotensin II increases differentiation of dopaminergic neurons from mesencephalic precursors via angiotensin type 2 receptors. European Journal of Neuroscience, 20, 1489–1498.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, K., Chapleau, M. W., Morimoto, S., Cassell, M. D., & Sigmund, C. D. (2004). Differential modulation of baroreflex control of heart rate by neuron- vs. glia-derived angiotensin II. Physiological Genomics, 20, 66–72.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, O., Seppa, T., Gaddnas, H., & Ahtee, L. (1999). The effects of acute nicotine on the metabolism of dopamine and the expression of Fos protein in striatal and limbic brain areas of rats during chronic nicotine infusion and its withdrawal. Journal of Neuroscience, 19, 8145–8151.

    PubMed  CAS  Google Scholar 

  • Santos, R. A., Campagnole-Santos, M. J., & Andrade, S. P. (2000). Angiotensin-(1–7): An update. Regulatory Peptide Letter, 91, 45–62.

    Article  CAS  Google Scholar 

  • Sapru, H. N. (1987). Control of blood pressure by muscarinic and nicotinic receptors in the ventrolateral medulla. In L. Davis (Ed.), Tobacco smoking and nicotine: A neurobiologic approach (pp. 287–300). New York, NY: Plenum.

    Google Scholar 

  • Serova, L., & Sabban, E. L. (2002). Involvement of alpha 7 nicotinic acetylcholine receptors in gene expression of dopamine biosynthetic enzymes in rat brain. Journal of Pharmacology and Experimental Therapeutics, 303, 896–903.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, Y., Yotsumoto, H., Okabe, T., & Takaku, F. (1988). Measurement of angiotensin-converting enzyme activity in intact human alveolar macrophages and effect of smoking. Respiration, 53, 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Sumners, C., Tang, W., Zelezna, B., & Raizada, M. K. (1991). Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain. Proceedings of the National Academy of Sciences of the United States of America, 88, 7567–7571.

    Article  PubMed  CAS  Google Scholar 

  • Sun, B., Chen, X., Xu, L., Sterling, C., & Tank, A. W. (2004). Chronic nicotine treatment leads to induction of tyrosine hydroxylase in locus ceruleus neurons: The role of transcriptional activation. Molecular Pharmacology, 66, 1011–1021.

    Article  PubMed  CAS  Google Scholar 

  • Tigerstedt, R., & Bergman, P. (1898). Niere und Krieslauf Skand. Archives of Physiology, 8, 223–271.

    Google Scholar 

  • Tseng, C. J., Appalsamy, M., Robertson, D., & Mosqueda-Garcia, R. (1993). Effects of nicotine on brain stem mechanisms of cardiovascular control. Journal of Pharmacology and Experimental Therepeutics, 265, 1511–1518.

    CAS  Google Scholar 

  • Tseng, C. J., Ger, L. P., Lin, H. C., & Tung, C. S. (1994). The pressor effect of nicotine in the rostral ventrolateral medulla of rats. Chinese Journal of Physiology, 37, 83–87.

    PubMed  CAS  Google Scholar 

  • Unger, T. (2003). Inhibiting angiotensin receptors in the brain: possible therapeutic implications. Current Medical Research and Opinion, 19, 449–451.

    Article  PubMed  CAS  Google Scholar 

  • Valentine, J. D., Matta, S. G., & Sharp, B. M. (1996). Nicotine-induced cFos expression in the hypothalamic paraventricular nucleus is dependent on brainstem effects: Correlations with cFos in catecholaminergic and noncatecholaminergic neurons in the nucleus tractus solitarius. Endocrinology, 137, 622–630.

    Article  PubMed  CAS  Google Scholar 

  • Valladao, A. S., Saad, W. A., Camargo, L. A., Renzi, A., De Luca Junior, L. A., & Menani, J. V. (1990). Interaction between cholinergic and adrenergic pathways of the hypothalamic ventromedial nucleus on cardiovascular regulation. Journal of the Autonomic Nervous System, 30, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Volterra, A., & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: the revolution continues. Nature Reviews. Neuroscience, 6, 626–640.

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen, O., Halbach, O., & Albrecht, D. (2006). The CNS renin–angiotensin system. Cell and Tissue Research, 326, 599–616.

    Article  CAS  Google Scholar 

  • Wang, H., Gallinat, S., Li, H. W., Sumners, C., Raizada, M. K., & Katovich, M. J. (2004). Elevated blood pressure in normotensive rats produced by ‘knockdown’ of the angiotensin type 2 receptor. Experimental Physiology, 89, 313–322.

    Article  PubMed  CAS  Google Scholar 

  • Zahradnik, H. P., Schafer, W., Wetzka, B., & Breckwoldt, M. (1991). Hypertensive disorders in pregnancy. The role of eicosanoids. Eicosanoids, 4, 123–136.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shereeni Veraasigham for her helpful pieces of advice and Fan Lin for technical support. This study received grants from FAPESP (01/10472-0), CNPq, and NIH. Merari FR Ferrari was recipient of fellowships from FAPESP (01/10471-3; 06/00650-1) and CAPES (BEX0140/05-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merari F. R. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, M.F.R., Raizada, M.K. & Fior-Chadi, D.R. Nicotine Modulates the Renin–Angiotensin System of Cultured Neurons and Glial Cells from Cardiovascular Brain Areas of Wistar Kyoto and Spontaneously Hypertensive Rats. J Mol Neurosci 33, 284–293 (2007). https://doi.org/10.1007/s12031-007-9006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-9006-x

Keywords

Navigation