Skip to main content

Advertisement

Log in

IL-33/ST2 axis in inflammation and immunopathology

  • Immunology in Serbia
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Interleukin-33 (IL-33), a member of the IL-1 family of cytokines, binds to its plasma membrane receptor, heterodimeric complex consisted of membrane-bound ST2L and IL-1R accessory protein, inducing NFkB and MAPK activation. IL-33 exists as a nuclear precursor and may act as an alarmin, when it is released after cell damage or as negative regulator of NFκB gene transcription, when acts in an intracrine manner. ST2L is expressed on several immune cells: Th2 lymphocytes, NK, NKT and mast cells and on cells of myeloid lineage: monocytes, dendritic cells and granulocytes. IL-33/ST2 axis can promote both Th1 and Th2 immune responses depending on the type of activated cell and microenvironment and cytokine network in damaged tissue. We previously described and discuss here the important role of IL-33/ST2 axis in experimental models of type 1 diabetes, experimental autoimmune encephalomyelitis, fulminant hepatitis and breast cancer. We found that ST2 deletion enhance the development of T cell-mediated autoimmune disorders, EAE and diabetes mellitus type I. Disease development was accompanied by dominantly Th1/Th17 immune response but also higher IL-33 production, which suggest that IL-33 in receptor independent manner could promote the development of inflammatory autoreactive T cells. IL-33/ST2 axis has protective role in Con A hepatitis. ST2-deficient mice had more severe hepatitis with higher influx of inflammatory cells in liver and dominant Th1/Th17 systemic response. Pretreatment of mice with IL-33 prevented Con A-induced liver damage through prevention of apoptosis of hepatocytes and Th2 amplification. Deletion of IL-33/ST2 axis enhances cytotoxicity of NK cells, production of IFN-γ in these cells and systemic production of IFN-γ, IL-17 and TNF-α, which leads to attenuated tumor growth. IL-33 treatment of tumor-bearing mice suppresses activity of NK cells, dendritic cell maturation and enhances alternative activation of macrophages. In conclusion, we observed that IL-33 has attenuated anti-inflammatory effects in T cell-mediated responses and that both IL-33 and ST2 could be further explored as potential therapeutic targets in treatment of immune-mediated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Onda H, Kasuya H, Takakura K, Hori T, Imaizumi T, Takeuchi T, Inoue I, Takeda J. Identification of genes differentially expressed in canine vasospastic cerebral arteries after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1999;19(11):1279–88.

    Article  PubMed  CAS  Google Scholar 

  2. Baekkevold ES, Roussigné M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F, Brandtzaeg P, Erard M, Haraldsen G, Girard JP. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol. 2003;163(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  3. Tominaga S, Jenkins NA, Gilbert DJ, Copeland NG, Tetsuka T. Molecular cloning of the murine ST2 gene: characterization and chromosomal mapping. Biochim Biophys Acta. 1991;1090:1–8.

    PubMed  CAS  Google Scholar 

  4. Bergers G, Reikerstorfer A, Braselmann S, Graninger P, Busslinger M. Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA isoforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor. EMBO J. 1994;13:1176–88.

    PubMed  CAS  Google Scholar 

  5. Oshikawa K, Yanagisawa K, Tominaga S, Sugiyama Y. Expression and function of the ST2 gene in a murine model of allergic airway inflammation. Clin Exp Allergy. 2002;32(10):1520–6.

    Article  PubMed  CAS  Google Scholar 

  6. Kuroiwa K, Arai T, Okazaki H, Minota S, Tominaga S. Identification of human ST2 protein in the sera of patients with autoimmune diseases. Biochem Biophys Res Commun. 2001;284(5):1104–8.

    Article  PubMed  CAS  Google Scholar 

  7. Oshikawa K, Kuroiwa K, Tago K, Iwahana H, Yanagisawa K, Ohno S, Tominaga SI, Sugiyama Y. Elevated soluble ST2 protein levels in sera of patients with asthma with an acute exacerbation. Am J Respir Crit Care Med. 2001;164(2):277–81.

    PubMed  CAS  Google Scholar 

  8. Tajima S, Oshikawa K, Tominaga S, Sugiyama Y. The increase in serum soluble ST2 protein upon acute exacerbation of idiopathic pulmonary fibrosis. Chest. 2003;124(4):1206–14.

    Article  PubMed  CAS  Google Scholar 

  9. Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107(5):721–6.

    Article  PubMed  Google Scholar 

  10. Xu D, Chan WL, Leung BP, Huang F, Wheeler R, Piedrafita D, Robinson JH, Liew FY. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med. 1998;187(5):787–94.

    Article  PubMed  CAS  Google Scholar 

  11. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.

    Article  PubMed  CAS  Google Scholar 

  12. Palmer G, Lipsky BP, Smithgall MD, Meininger D, Siu S, Talabot-Ayer D, Gabay C, Smith DE. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine. 2008;42(3):358–64.

    Article  PubMed  CAS  Google Scholar 

  13. Bulek K, Swaidani S, Qin J, Lu Y, Gulen MF, Herjan T, Min B, Kastelein RA, Aronica M, Kosz-Vnenchak M, Li X. The essential role of single Ig IL-1 receptor-related molecule/Toll IL-1R8 in regulation of Th2 immune response. J Immunol. 2009;182(5):2601–9.

    Article  PubMed  CAS  Google Scholar 

  14. Pushparaj PN, Tay HK, H’ng SC, Pitman N, Xu D, McKenzie A, Liew FY, Melendez AJ. The cytokine interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci USA. 2009;106(24):9773–8.

    Article  PubMed  CAS  Google Scholar 

  15. Allakhverdi Z, Smith DE, Comeau MR, Delespesse G. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J Immunol. 2007;179(4):2051–4.

    PubMed  CAS  Google Scholar 

  16. Moulin D, Donzé O, Talabot-Ayer D, Mézin F, Palmer G, Gabay C. Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine. 2007;40(3):216–25.

    Article  PubMed  CAS  Google Scholar 

  17. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS ONE. 2008;3(10):e3331.

    Article  PubMed  Google Scholar 

  18. Ohno T, Oboki K, Morita H, Kajiwara N, Arae K, Tanaka S, Ikeda M, Iikura M, Akiyama T, Inoue J, Matsumoto K, Sudo K, Azuma M, Okumura K, Kamradt T, Saito H, Nakae S. Paracrine IL-33 stimulation enhances lipopolysaccharide-mediated macrophage activation. PLoS ONE. 2011;6(4):e18404.

    Article  PubMed  CAS  Google Scholar 

  19. Liu J, Buckley JM, Redmond HP, Wang JH. ST2 negatively regulates TLR2 signaling, but is not required for bacterial lipoprotein-induced tolerance. J Immunol. 2010;184(10):5802–8.

    Article  PubMed  CAS  Google Scholar 

  20. Sweet MJ, Leung BP, Kang D, Sogaard M, Schulz K, Trajkovic V, Campbell CC, Xu D, Liew FY. A novel pathway regulating lipopolysaccharide-induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression. J Immunol. 2001;166:6633–9.

    PubMed  CAS  Google Scholar 

  21. Kumar S, Tzimas MN, Griswold DE, Young PR. Expression of ST2, an interleukin-1 receptor homologue, is induced by proinflammatory stimuli. Biochem Biophys Res Commun. 1997;235(3):474–8.

    Article  PubMed  CAS  Google Scholar 

  22. Talabot-Ayer D, Lamacchia C, Gabay C, Palmer G. Interleukin-33 is biologically active independently of caspase-1 cleavage. J Biol Chem. 2009;284(29):19420–6.

    Article  PubMed  CAS  Google Scholar 

  23. Lüthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, Brumatti G, Taylor RC, Kersse K, Vandenabeele P, Lavelle EC, Martin SJ. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31(1):84–98.

    Article  PubMed  Google Scholar 

  24. Ali S, Nguyen DQ, Falk W, Martin MU. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation. Biochem Biophys Res Commun. 2010;391(3):1512–6.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao W, Hu Z. The enigmatic processing and secretion of interleukin-33. Cell Mol Immunol. 2010;7(4):260–2.

    Article  PubMed  CAS  Google Scholar 

  26. Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Küchler AM. Interleukin-33 - cytokine of dual function or novel alarmin? Trends Immunol. 2009;30(5):227–33.

    Article  PubMed  CAS  Google Scholar 

  27. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA. 2007;104(1):282–7.

    Article  PubMed  CAS  Google Scholar 

  28. Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, Martin MU. The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB-stimulated gene transcription. J Immunol. 2011;187(4):1609–16.

    Article  PubMed  CAS  Google Scholar 

  29. Enoksson M, Lyberg K, Möller-Westerberg C, Fallon PG, Nilsson G, Lunderius-Andersson C. Mast cells as sensors of cell injury through IL-33 recognition. J Immunol. 2011;186(4):2523–8.

    Article  PubMed  CAS  Google Scholar 

  30. Komai-Koma M, Xu D, Li Y, McKenzie AN, McInnes IB, Liew FY. IL-33 is a chemoattractant for human Th2 cells. Eur J Immunol. 2007;37(10):2779–86.

    Article  PubMed  CAS  Google Scholar 

  31. Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol. 2008;20(8):1019–30.

    Article  PubMed  CAS  Google Scholar 

  32. Bourgeois E, Van LP, Samson M, Diem S, Barra A, Roga S, Gombert JM, Schneider E, Dy M, Gourdy P, Girard JP, Herbelin A. The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur J Immunol. 2009;39(4):1046–55.

    Article  PubMed  CAS  Google Scholar 

  33. Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 2009;183:6469–77.

    Article  PubMed  CAS  Google Scholar 

  34. Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL, Kita H. IL-33-activated dendritic cells induce an atypical TH2-type response. J Allergy Clin Immunol. 2009;123(5):1047–54.

    Article  PubMed  CAS  Google Scholar 

  35. Yang Q, Li G, Zhu Y, Liu L, Chen E, Turnquist H, Zhang X, Finn OJ, Chen X, Lu B. IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8(+) T cells. Eur J Immunol. 2011;41(11):3351–60.

    Article  PubMed  CAS  Google Scholar 

  36. Miller AM, et al. IL-33 reduces the development of atherosclerosis. J Exp Med. 2008;205:339–46.

    Article  PubMed  CAS  Google Scholar 

  37. Humphreys NE, Xu D, Hepworth MR, Liew FY, Grencis RK. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J Immunol. 2008;180(4):2443–9.

    PubMed  CAS  Google Scholar 

  38. Jones LA, Roberts F, Nickdel MB, Brombacher F, McKenzie AN, Henriquez FL, Alexander J, Roberts CW. IL-33 receptor (T1/ST2) signalling is necessary to prevent the development of encephalitis in mice infected with Toxoplasma gondii. Eur J Immunol. 2010;40(2):426–36.

    Article  PubMed  CAS  Google Scholar 

  39. Becerra A, Warke RV, de Bosch N, Rothman AL, Bosch I. Elevated levels of soluble ST2 protein in dengue virus infected patients. Cytokine. 2008;41(2):114–20.

    Article  PubMed  CAS  Google Scholar 

  40. Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, Massa PT. Induction of IL-33 expression and activity in central nervous system glia. J Leukoc Biol. 2008;84(3):631–43.

    Article  PubMed  CAS  Google Scholar 

  41. Roth GA, Zimmermann M, Lubsczyk BA, Pilz J, Faybik P, Hetz H, Hacker S, Mangold A, Bacher A, Krenn CG, Ankersmit HJ. Up-regulation of interleukin 33 and soluble ST2 serum levels in liver failure. J Surg Res. 2010;163(2):79–83.

    Article  Google Scholar 

  42. Xiao X, Zhao P, Rodriguez-Pinto D, Qi D, Henegariu O, Alexopoulou L, Flavell A, Wong S, Wen L. Inflammatory regulation by TLR3 in acute hepatitis. J Immunol. 2009;183:3712–9.

    Article  PubMed  CAS  Google Scholar 

  43. Itoh A, Isoda K, Kondoh M, Kawase M, Kobayashi M, Tamesada M, Yagi K. Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury. Biol Pharm Bull. 2009;32:1215–9.

    Article  PubMed  CAS  Google Scholar 

  44. Wolf AM, Wolf D, Avila MA, Moschen AR, Berasain C, Enrich B, Rumpold H, Tilg H. Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. J Hepatol. 2006;44:537–43.

    Article  PubMed  CAS  Google Scholar 

  45. Hanson JC, Bostick MK, Campe CB, Kodali P, Lee G, Yan J, Maher JJ. Transgenic overexpression of interleukin-8 in mouse liver protects against galactosamine/endotoxin toxicity. J Hepatol. 2006;44:359–567.

    Article  PubMed  CAS  Google Scholar 

  46. Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest. 1992;90:196–203.

    Article  PubMed  CAS  Google Scholar 

  47. Volarevic V, Mitrovic M, Milovanovic M, Zelen I, Nikolic I, Mitrovic S, Pejnovic N, Arsenijevic N, Lukic ML. Protective role of IL-33/ST2 axis in Con A-induced hepatitis. J Hepatol. 2012;56(1):26–33.

    Google Scholar 

  48. Erhardt A, Biburger M, Papadopoulos T, Tiegs G. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology. 2007;45(2):475–85.

    Article  PubMed  CAS  Google Scholar 

  49. Wei HX, Chuang YH, Li B, Wei H, Sun R, Moritoki Y, Gershwin ME, Lian ZX, Tian Z. CD4 + CD25 + Foxp3 + regulatory T cells protect against T cell-mediated fulminant hepatitis in a TGF-beta-dependent manner in mice. J Immunol. 2008;181(10):7221–9.

    PubMed  CAS  Google Scholar 

  50. Nagata T, Mckinley L, Peschon J, Alcorn J, Aujla S, Kolls J. Requirement of IL-17RA in Con A induced hepatitis and negative regulation of IL-17 production in mouse T cells. J Immunol. 2008;181:7473–9.

    PubMed  CAS  Google Scholar 

  51. Suzuki M, Maghni K, Molet S, Shimbara A, Hamid QA, Martin JG. IFN-gamma secretion by CD8T cells inhibits allergen-induced airway eosinophilia but not late airway responses. J Allergy Clin Immunol. 2002;109:803–9.

    Article  PubMed  CAS  Google Scholar 

  52. Dong Z, Wei H, Sun R, Tian Z. The roles of innate immune cells in liver injury and regeneration. Cell Mol Immunol. 2007;4:241–52.

    PubMed  CAS  Google Scholar 

  53. Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci USA. 2000;97:5498–503.

    Article  PubMed  CAS  Google Scholar 

  54. Küsters S, Gantner F, Kunstle G, Tiegs G. Interferon gamma plays a critical role in T cell dependent liver injury in mice initiated by concanavalin A. Gastroenterology. 1996;111:462–71.

    Article  PubMed  Google Scholar 

  55. Robinson R, Wang J, Cripps J, Milks M, English K, Pearson T, Gorham J. End-organ damage in a mouse model of fulminant liver inflammation requires CD4 + T cell production of IFN-γ but is independent of Fas. J Immunol. 2009;182:3278–84.

    Article  PubMed  CAS  Google Scholar 

  56. Tagawa Y, Sekikawa K, Iwakura Y. Suppression of concanavalin A-induced hepatitis in IFN-γ −/− mice, but not in TNF-α −/− mice: role for IFN-γ in activating apoptosis of hepatocytes. J Immunol. 1997;159:1418–28.

    PubMed  CAS  Google Scholar 

  57. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy A, Karow M, Flavell RA. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity. 2007;27:647–59.

    Article  PubMed  CAS  Google Scholar 

  58. Wondimu Z, Santodomingo-Garzon T, Le T, Swain MG. Protective role of interleukin-17 in murine NKT cell-driven acute experimental hepatitis. Am J Pathol. 2010;177:2334–46.

    Article  PubMed  CAS  Google Scholar 

  59. Xu M, Morishima N, Mizoguchi I, Chiba Y, Fujita K, Kuroda M, Iwakura Y, Cua DJ, Yasutomo K, Mizuguchi J, Yoshimoto T. Regulation of the development of acute hepatitis by IL-23 through IL-22 and IL-17 production. Eur J Immunol. 2011;41(10):2828–39.

    Article  PubMed  CAS  Google Scholar 

  60. Erhardt A, Tiegs G. IL-33—a cytokine which balances on a knife’s edge? J Hepatol. 2012;56(1):7–10.

    Google Scholar 

  61. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10(2):103–10.

    Article  PubMed  CAS  Google Scholar 

  62. Oboki K, Nakae S, Matsumoto K, Saito H. IL-33 and airway inflammation. Allergy Asthma Immunol Res. 2011;3(2):81–8.

    Article  PubMed  CAS  Google Scholar 

  63. Préfontaine D, Lajoie-Kadoch S, Foley S, Audusseau S, Olivenstein R, Halayko AJ, Lemière C, Martin JG, Hamid Q. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J Immunol. 2009;183(8):5094–103.

    Article  PubMed  Google Scholar 

  64. Kearley J, Buckland KF, Mathie SA, Lloyd CM. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am J Respir Crit Care Med. 2009;179(9):772–81.

    Article  PubMed  CAS  Google Scholar 

  65. Hayakawa H, Hayakawa M, Kume A, Tominaga S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem. 2007;282:26369–80.

    Article  PubMed  CAS  Google Scholar 

  66. Préfontaine D, Nadigel J, Chouiali F, Audusseau S, Semlali A, Chakir J, Martin JG, Hamid Q. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol. 2010;125(3):752–4.

    Article  PubMed  Google Scholar 

  67. Kondo Y, Yoshimoto T, Yasuda K, Futatsugi-Yumikura S, Morimoto M, Hayashi N, Hoshino T, Fujimoto J, Nakanishi K. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int Immunol. 2008;20(6):791–800.

    Article  PubMed  CAS  Google Scholar 

  68. Stolarski B, Kurowska-Stolarska M, Kewin P, Xu D, Liew FY. IL-33 exacerbates eosinophil-mediated airway inflammation. J Immunol. 2010;185(6):3472–80.

    Article  PubMed  CAS  Google Scholar 

  69. Zhiguang X, Wei C, Steven R, Wei D, Wei Z, Rong M, Zhanguo L, Lianfeng Z. Over-expression of IL-33 leads to spontaneous pulmonary inflammation in mIL-33 transgenic mice. Immunol Lett. 2010;131(2):159–65.

    Article  PubMed  Google Scholar 

  70. Besnard AG, Togbe D, Guillou N, Erard F, Quesniaux V, Ryffel B. IL-33-activated dendritic cells are critical for allergic airway inflammation. Eur J Immunol. 2011;41(6):1675–86.

    Article  PubMed  CAS  Google Scholar 

  71. Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A, Nambu A, Abe T, Kiyonari H, Matsumoto K, Sudo K, Okumura K, Saito H, Nakae S. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci USA. 2010;107(43):18581–6.

    Article  PubMed  CAS  Google Scholar 

  72. Coyle AJ, Lloyd C, Tian J, Nguyen T, Erikkson C, Wang L, Ottoson P, Persson P, Delaney T, Lehar S, Lin S, Poisson L, Meisel C, Kamradt T, Bjerke T, Levinson D, Gutierrez-Ramos JC. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J Exp Med. 1999;190(7):895–902.

    Article  PubMed  CAS  Google Scholar 

  73. Kurowska-Stolarska M, Kewin P, Murphy G, Russo RC, Stolarski B, Garcia CC, Komai-Koma M, Pitman N, Li Y, Niedbala W, McKenzie AN, Teixeira MM, Liew FY, Xu D. IL-33 induces antigen-specific IL-5 + T cells and promotes allergic-induced airway inflammation independent of IL-4. J Immunol. 2008;181(7):4780–90.

    PubMed  CAS  Google Scholar 

  74. Mangan NE, Dasvarma A, McKenzie AN, Fallon PG. T1/ST2 expression on Th2 cells negatively regulates allergic pulmonary inflammation. Eur J Immunol. 2007;37(5):1302–12.

    Article  PubMed  CAS  Google Scholar 

  75. Wesche H, Korherr C, Kracht M, Falk W, Resch K, Martin MU. The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J Biol Chem. 1997;272(12):7727–31.

    Article  PubMed  CAS  Google Scholar 

  76. Zdravkovic N, Shahin A, Arsenijevic N, Lukic ML, Mensah-Brown EP. Regulatory T cells and ST2 signaling control diabetes induction with multiple low doses of streptozotocin. Mol Immunol. 2009;47(1):28–36.

    Article  PubMed  CAS  Google Scholar 

  77. Jiang HR, Al Rasebi Z, Mensah-Brown E, et al. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J Immunol. 2009;182(2):1167–73.

    PubMed  CAS  Google Scholar 

  78. Nakano H, Lin KL, Yanagita M, Charbonneau C, Cook DN, Kakiuchi T, Gunn MD. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat Immunol. 2009;10(4):394–402.

    Article  PubMed  CAS  Google Scholar 

  79. Vinay DS, Kim CH, Choi BK, Kwon BS. Origins and functional basis of regulatory CD11c + CD8 + T cells. Eur J Immunol. 2009;39(6):1552–63.

    Article  PubMed  CAS  Google Scholar 

  80. Jovanovic I, Radosavljevic G, Mitrovic M, Juranic VL, McKenzie AN, Arsenijevic N, Jonjic S, Lukic ML. ST2 deletion enhances innate and acquired immunity to murine mammary carcinoma. Eur J Immunol. 2011;41(7):1902–12.

    Article  PubMed  CAS  Google Scholar 

  81. Foti M, Granucci F, Ricciardi-Castagnoli P. A central role for tissue-resident dendritic cells in innate responses. Trends Immunol. 2004;25(12):650–4.

    Article  PubMed  CAS  Google Scholar 

  82. Mayuzumi N, Matsushima H, Takashima A. IL-33 promotes DC development in BM culture by triggering GM-CSF production. Eur J Immunol. 2009;39(12):3331–42.

    Article  PubMed  CAS  Google Scholar 

  83. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  PubMed  CAS  Google Scholar 

  84. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.

    Article  PubMed  CAS  Google Scholar 

  85. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23:344–6.

    Article  PubMed  CAS  Google Scholar 

  86. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  PubMed  CAS  Google Scholar 

  87. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff TH. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA. 2004;101:4560–5.

    Article  PubMed  CAS  Google Scholar 

  88. Mantovani A, Sica A, Locati M. New vistas on macrophage differentiation and activation. Eur J Immunol. 2007;37:14–6.

    Article  PubMed  CAS  Google Scholar 

  89. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    Article  PubMed  CAS  Google Scholar 

  90. Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86:1105–9.

    Article  PubMed  CAS  Google Scholar 

  91. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9:259–70.

    Article  PubMed  CAS  Google Scholar 

  92. Mantovani A, Allavena P, Sica A. Tumor-associated macrophages as a prototypic type II polarized phagocyte population: role in tumor progression. Eur J Cancer. 2004;40:1660–7.

    Article  PubMed  CAS  Google Scholar 

  93. Jovanovic I, Pejnovic N, Radosavljevic G, Arsenijevic N, Lukic ML. IL-33/ST2 Axis in innate and acquired immunity to tumors. Oncoimmunology. 2012;1:229–31.

    Google Scholar 

  94. Palmer G, Talabot-Ayer D, Lamacchia C, Toy D, Seemayer CA, Viatte S, Finckh A, Smith DE, Gabay C. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum. 2009;60(3):738–49.

    Article  PubMed  CAS  Google Scholar 

  95. Ohto-Ozaki H, Kuroiwa K, Mato N, Matsuyama Y, Hayakawa M, Tamemoto H, Tominaga S. Characterization of ST2 transgenic mice with resistance to IL-33. Eur J Immunol. 2010;40(9):2632–42.

    Article  PubMed  CAS  Google Scholar 

  96. Pastorelli L, Garg RR, Hoang SB, Spina L, Mattioli B, Scarpa M, Fiocchi C, Vecchi M, Pizarro TT. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc Natl Acad Sci USA. 2010;107(17):8017–22.

    Article  PubMed  CAS  Google Scholar 

  97. Yin H, Li XY, Yuan BH, Zhang BB, Hu SL, Gu HB, Jin XB, Zhu JY. Adenovirus-mediated overexpression of soluble ST2 provides a protective effect on lipopolysaccharide-induced acute lung injury in mice. Clin Exp Immunol. 2011;164(2):248–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by grants ON175069, ON175071 and ON175103 from Ministry of Education and Science, Republic of Serbia. We thank Dr. Andrew McKenzie for providing us ST2 knockout mice and also thank Milan Milojevic for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag L. Lukic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milovanovic, M., Volarevic, V., Radosavljevic, G. et al. IL-33/ST2 axis in inflammation and immunopathology. Immunol Res 52, 89–99 (2012). https://doi.org/10.1007/s12026-012-8283-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8283-9

Keywords

Navigation