Skip to main content

Advertisement

Log in

Drug delivery to tumors of the central nervous system

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Contemporary treatment of malignant brain tumors has been hampered by problems with drug delivery to the tumor bed. Inherent boundaries of the central nervous system, such as the blood-brain barrier or the bloodcerebrospinal fluid barrier, and a general lack of response to many chemotherapeutic agents have led to alternative treatment modalities. In general, all these modalities have sought to either disrupt or bypass the physiologic brain barriers and deliver the drug directly to the tumor. This article reviews past, as well as current, methods of drug delivery to tumors of the central nervous system. Special emphasis is placed on biodegradable polymers that can release chemotherapeutic agents against malignant gliomas. A variety of other nonchemotherapeutic drugs, including antiangiogenesis and immunotherapeutic agents, are presented in the context of new polymer technology. Finally, future directions in drug delivery are discussed with an overview on new advances in emerging biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Legler JM, Gloeckler Ries LA, Smith MA, et al.: Brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 1999, 91:1382–1390.

    Article  PubMed  CAS  Google Scholar 

  2. Barker FG, Chang SM, Gutin PH, et al.: Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 1998, 42:709–723.

    Article  PubMed  Google Scholar 

  3. Mohan DS, Suh JH, Phan JL, et al.: Outcome in elderly patients undergoing definitive surgery and radiation therapy for supratentorial glioblastoma multiforme at a tertiary institution. Int J Rad Oncol Biol Phys 1998, 42:981–987.

    Article  CAS  Google Scholar 

  4. Kornblith PL, Walker M: Chemotherapy for malignant gliomas. J Neurosurg 1988, 68:1–17.

    PubMed  CAS  Google Scholar 

  5. Prokai L, Prokai-Tatrai K, Bodor N: Targeting drugs tot he brain by redox chemical delivery systems. Med Res Rev 2000, 20:367–416.

    Article  PubMed  CAS  Google Scholar 

  6. Pardridge WM: Vector-mediated drug delivery to the brain. Adv Drug Deliv Rev 1999, 36:299–321. Reviews the currently employed vector-mediated drug delivery systems to the brain, including modified proteins and receptorspecific monoclonal antibodies.

    Article  CAS  PubMed  Google Scholar 

  7. Williams PC, Henner WD, Roman-Goldstein S, et al.: Toxicity and efficacy of carboplatin and etoposide in conjuction with disruption of the blood-brain barrier in the treatment of intracranial neoplasms. Neurosurgery 1995, 37:17–28.

    Article  PubMed  CAS  Google Scholar 

  8. Shapiro WR, Green SB, Burger PC, et al.: A randomized comparison of intra-arterial versus intravenous BCNU, with or without intravenous 5-fluorouracial, for newly diagnosed patients with malignant glioma. J Neurosurg 1992, 76:772–781.

    PubMed  CAS  Google Scholar 

  9. Sanovich E, Bartus RT, Friden PM, et al.: Pathway across blood-brain barrier opened by the bradykinin RMP-7. Brain Res 1995, 705:125–135.

    Article  PubMed  CAS  Google Scholar 

  10. Elliott PJ, Hayward NJ, Dean RL, et al.: Intravenous RMP-7 selectively increases uptake of carboplatin in experimental brain tumors. Cancer Res 1996, 56:3998–4005.

    PubMed  CAS  Google Scholar 

  11. Chandler WF, Greenberg HS, Ensminger WD, et al.: Use of implantable pump systems for intraarterial, intraventricular, and intratumoral treatment of malignant brain tumors. Ann N Y Acad Sci 1988, 531:206–212.

    Article  PubMed  CAS  Google Scholar 

  12. Lord P, Allami H, Davis M, et al.: MiniMed Technologies Programmable Implantable Infusion System. Ann NY Acad Sci 1988, 531:66–71.

    Article  PubMed  CAS  Google Scholar 

  13. Heruth KT: Medtronic SynchroMed drug administration system. Ann NY Acad Sci 1988, 531:72–75.

    Article  PubMed  CAS  Google Scholar 

  14. Langer R, Folkman J: Polymers for the sustained release of proteins and other macromolecules. Nature 1976, 263:797–800.

    Article  PubMed  CAS  Google Scholar 

  15. Tamargo RJ, Myseros JS, Epstein JI, et al.: Interstitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery in the brain. Cancer Res 1993, 53:329–333.

    PubMed  CAS  Google Scholar 

  16. Leong KW, Brott BC, Langer R: Bioerodible polyanhydrides as drug-carrier matrices. I. Characterization, degradation, and release characteristics. J Biomed Mater Res 1985, 19:941–955.

    Article  PubMed  CAS  Google Scholar 

  17. Chasin M: Polyanhydrides as drug delivery systems. In Biodegradable Polymers as Drug Delivery Systems. Edited by Chasin M, Langer R. New York: M.Dekker; 1990: 43–70.

    Google Scholar 

  18. Leong KW, D’Amore PD, Marletta M, Langer R: Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. J Biomed Mater Res 1986, 20:51–64.

    Article  PubMed  CAS  Google Scholar 

  19. Domb A, Bogdansky S, Olivi A, et al.: Controlled delivery of water soluble and hydrolytically unstable anti-cancer drugs for polymeric implants. Polymer Preprints 1991, 32:219–220.

    CAS  Google Scholar 

  20. Menei P, Benoit JP, Boisdron-Celle M, et al.: Drug targeting into the central nervous system by stereotactic implantation of biodegradable microspheres. Neurosurgery 1994, 34:1058–1064.

    Article  PubMed  CAS  Google Scholar 

  21. Gref R, Minamitake Y, Peracchia MT, et al.: Biodegradable longcirculating polymeric nanospheres. Science 1994, 263:1600–1603.

    Article  PubMed  CAS  Google Scholar 

  22. Gabizon A: Liposomal anthracyclines. Hematol Oncol Clin North Am 1994, 8:431–450.

    PubMed  CAS  Google Scholar 

  23. Golumbek PT, Azhari R, Jaffe EM, et al.: Controlled release, biodegradable cytokine depots: new approach in cancer vaccine design. Cancer Res 1993, 53:5841–5844.

    PubMed  CAS  Google Scholar 

  24. Loo TL, Dion RL, Dixon RL, Rall DP: The antitumor agent, 1,3-bis(2-chloroethyl)-1-nitrosourea. J Pharm Sci 1966, 55:492–497.

    Article  CAS  Google Scholar 

  25. Green SB, Byar DP, Walker DP, et al.: Comparisons of carmustine, procarbazine, and high-dose methylprednisolone as additions to surgery and radiotherapy for the treatment of malignant glioma. Cancer Treat Rep 1983, 67:121–132.

    PubMed  CAS  Google Scholar 

  26. Walker MD, Green SB, Byar DP, et al.: Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 1980, 303:1323–1329.

    Article  PubMed  CAS  Google Scholar 

  27. Grossman SA, Reinhard C, Colvin OM, et al.: The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 1992, 76:640–647.

    PubMed  CAS  Google Scholar 

  28. Yang MB, Tamargo RJ, Brem H: Controlled delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea from ethylene-vinyl acetate copolymer. Cancer Res 1989, 49:5103–5107.

    PubMed  CAS  Google Scholar 

  29. Wu MP, Tamada JA, Brem H, Langer R: In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy. J Biomed Mater Res 1994, 28:387–295.

    Article  PubMed  CAS  Google Scholar 

  30. Brem H, Tamargo RJ, Olivi A, et al.: Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain. J Neurosurg 1994, 80:283–290.

    PubMed  CAS  Google Scholar 

  31. Brem H, Mahaley MS Jr, Vick NA, et al.: Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg 1991, 74:441–446.

    PubMed  CAS  Google Scholar 

  32. Brem H, Piantadosi S, Burger PC, et al.: Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery of biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 1995, 345:1008–1012.

    Article  PubMed  CAS  Google Scholar 

  33. Brem H, Ewend MG, Piantadosi S, et al.: The safety of interstitial chemotherapy with BCNU-loaded polymer in the treatment of newly diagnosed malignant gliomas. Phase I trial. J Neurooncol 1995, 26:111–123.

    CAS  Google Scholar 

  34. Valtonen S, Timonen U, Toivanen P, et al.: Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurg 1997, 41:44–48.

    Article  CAS  Google Scholar 

  35. Cahan MA, Walter KA, Colvin OM, Brem H: Cytotoxicity of taxol in vitro against human and rat malignant brain tumors. Cancer Chemother Pharmacol 1994, 33:441–444.

    PubMed  CAS  Google Scholar 

  36. Walter K, Cahan M, Gur A, et al.: Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res 1994, 54:2207–2212.

    PubMed  CAS  Google Scholar 

  37. Weingart J, Thompson R, Tyler B, et al.: Local delivery of the topoisomerase I inhibitor camptothecin prolongs survival in the rat intracranial 9L gliosarcoma model. Int J Cancer 1995, 62:605–609.

    Article  PubMed  CAS  Google Scholar 

  38. Dang W, Colvin OM, Brem H, Saltzman WM: Covalent coupling of methotrexate to dextran enhances the penetrations of cytotoxicity into tissue-like matrix. Cancer Res 1994, 54:1729–1735.

    PubMed  CAS  Google Scholar 

  39. Judy K, Olivi A, Buahin KG, et al.: Effectiveness of controlled release of a cyclophosphamide derivative with polymers against rat glioma. J Neurosurg 1995, 82:481–486.

    PubMed  CAS  Google Scholar 

  40. Menei P, Boisdron-Celle M, Croue A, et al.: Effect of stereotactic implantation of biodegradable 5-fluorouracilloaded microspheres in healthy and C6 glioma-bearing rats. Neurosurgery 1996, 39:117–124.

    Article  PubMed  CAS  Google Scholar 

  41. Olivi A, Gilbert M, Duncan KL, et al.: Direct delivery of platinum-based antineoplastics to the central nervous system: a toxicity and ultrastructural study. Cancer Chemother Pharmacol 1993, 31:449–454.

    Article  PubMed  CAS  Google Scholar 

  42. Watts MC, Lesniak MS, Burke M, et al.: Controlled release of adriamycin in the treatment of malignant glioma. Presented at the American Association of Neurological Surgeons Annual Meeting, Denver, CO, April, 1997.

  43. Weingart J, Sipos EP, Brem H: The role of minocycline in the treatment of intracranial 9L glioma. J Neurosurg 1995, 82:635–640.

    PubMed  CAS  Google Scholar 

  44. Hanes J, Sills AK, Zhao Z: Controlled local delivery of interleukin-2 by biodegradable polymers protects animals from experimental brain tumors and liver tumors. Proc Natl Acad Sci USA. Submitted.

  45. Tamargo RJ, Sills AJ, Reinhard CS, et al.: Interstitial delivery of dexamethasone in the brain for the reduction of peritumoral edema. J Neurosurg 1991, 74:956–961.

    PubMed  CAS  Google Scholar 

  46. Bobo RH, Laske DW, Akbasak A, et al.: Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994, 91:2076–2080.

    Article  PubMed  CAS  Google Scholar 

  47. Laske DW, Morrison PF, Lieberman DM, et al.: Chronic interstitial infusion of protein to primate brain: determination of drug distribution and clearance with single-photon emission computerized tomography imaging. J Neurosurg 1997, 87:586–594.

    Article  PubMed  CAS  Google Scholar 

  48. Lieberman DM, Laske DW, Morrison PF, et al.: Convectionenhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 1995, 82:1021–1029.

    PubMed  CAS  Google Scholar 

  49. Lonser RR, Corthesy ME, Morrison PF, et al.: Convectionenhanced selective excitotoxic ablation of the neurons of the globus pallidus internus for treatment of parkinsonism in honhuman primates. J Neurosurg 1999, 91:294–302. An excellent article which describes the use of convection-enhanced drug delivery in the treatment of parkinsonian symptoms.

    Article  PubMed  CAS  Google Scholar 

  50. Santini JT, Cima MJ, Langer R: A controlled-release microchip. Nature 1999, 397:335–338. This article describes a novel approach to drug delivery. It shows how a solid-state silicon chip may have the potential to deliver multiple drugs at different time points.

    Article  PubMed  CAS  Google Scholar 

  51. Brem H, Langer R: Polymer-based drug delivery to the brain. Sci Med 1996, 3:52–61.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesniak, M.S., Langer, R. & Brem, H. Drug delivery to tumors of the central nervous system. Curr Neurol Neurosci Rep 1, 210–216 (2001). https://doi.org/10.1007/s11910-001-0020-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-001-0020-z

Keywords

Navigation