Skip to main content

Advertisement

Log in

Neuroprotective Mechanisms of the ACE2–Angiotensin-(1-7)–Mas Axis in Stroke

  • Hypertension and the Kidney (RM Carey, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2–angiotensin-(1-7)–Mas axis [ACE2–Ang-(1-7)–Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that describe the protective role of the ACE2–Ang-(1-7)–Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II (AngII) via its type 1 receptor, including anti-inflammatory, anti-oxidant, vasodilatory, and angiogenic effects, and the role of altered kinase–phosphatase signaling. Interactions of Mas with other receptors, including bradykinin receptors and AngII type 2 receptors are also considered. A more complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Recently published papers of importance have been highlighted as: • Of importance •• Of major importance

  1. Dai W, Funk A, Herdegen T, Unger T, Culman J. Blockade of central angiotensin AT(1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke. 1999;30(11):2391–8.

    CAS  PubMed  Google Scholar 

  2. Mecca AP, O'Connor TE, Katovich MJ, Sumners C. Candesartan pretreatment is cerebroprotective in a rat model of endothelin-1-induced middle cerebral artery occlusion. Exp Physiol. 2009;94(8):937–46. doi:10.1113/expphysiol.2009.047936.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Ong HT, Ong LM, Ho JJ. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) in patients at high risk of cardiovascular events: a meta-analysis of 10 randomised placebo-controlled trials. ISRN Cardiol. 2013;2013:478597. doi:10.1155/2013/478597.

    PubMed Central  PubMed  Google Scholar 

  4. Joseph JP, Mecca AP, Regenhardt RW, Bennion DM, Rodriguez V, Desland F, et al. The angiotensin type 2 receptor agonist Compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke. Neuropharmacology. 2014;81C:134–41. doi:10.1016/j.neuropharm.2014.01.044.

    Google Scholar 

  5. Min LJ, Mogi M, Tsukuda K, Jing F, Ohshima K, Nakaoka H, et al. Direct stimulation of angiotensin II type 2 receptor initiated after stroke ameliorates ischemic brain damage. Am J Hypertens. 2014;63(3):e 53–9.

    Google Scholar 

  6. McCarthy CA, Vinh A, Miller AA, Hallberg A, Alterman M, Callaway JK, et al. Direct angiotensin AT2 receptor stimulation using a novel AT2 receptor agonist, compound 21, evokes neuroprotection in conscious hypertensive rats. PLoS One. 2014;9(4):e95762. doi:10.1371/journal.pone.0095762.

    PubMed Central  PubMed  Google Scholar 

  7. Lee S, Brait VH, Arumugam TV, Evans MA, Kim HA, Widdop RE, et al. Neuroprotective effect of an angiotensin receptor type 2 agonist following cerebral ischemia in vitro and in vivo. Exp Transl Stroke Med. 2012;4(1):16. doi:10.1186/2040-7378-4-16.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. McCarthy CA, Vinh A, Broughton BR, Sobey CG, Callaway JK, Widdop RE. Angiotensin II type 2 receptor stimulation initiated after stroke causes neuroprotection in conscious rats. Hypertension. 2012;60(6):1531–7. doi:10.1161/HYPERTENSIONAHA.112.199646. This was the first demonstration of protective AT2R effects by pharmacological activation after the 18 onset of ischemic stroke in conscious rats, providing especially important information about the clinical potential of AT2R agonism in stroke.

    CAS  PubMed  Google Scholar 

  9. Gelosa P, Pignieri A, Fandriks L, de Gasparo M, Hallberg A, Banfi C, et al. Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: focus on renal damage. J Hypertens. 2009;27(12):2444–51. doi:10.1097/HJH.0b013e3283311ba1.

    CAS  PubMed  Google Scholar 

  10. Smith Jr SC. Reducing the global burden of ischemic heart disease and stroke: a challenge for the cardiovascular community and the United Nations. Circulation. 2011;124(3):278–9. doi:10.1161/CIRCULATIONAHA.111.040170; 10.1161/CIRCULATIONAHA.111.040170.

    PubMed  Google Scholar 

  11. Jauch EC, Saver JL, Adams Jr HP, Bruno A, Connors JJ, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947. doi:10.1161/STR.0b013e318284056a.

    PubMed  Google Scholar 

  12. Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology. 2008;55(3):363–89. doi:10.1016/j.neuropharm.2007.12.007.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Greenberg DA. Preclinical stroke research: gains and gaps. Stroke. 2013;44(6 Suppl 1):S114–5. doi:10.1161/STROKEAHA.113.002088.

    PubMed Central  PubMed  Google Scholar 

  14. Lu J, Jiang T, Wu L, Gao L, Wang Y, Zhou F, et al. The expression of angiotensin-converting enzyme 2-angiotensin-(1–7)-Mas receptor axis are upregulated after acute cerebral ischemic stroke in rats. Neuropeptides. 2013. doi:10.1016/j.npep.2013.09.002.

    Google Scholar 

  15. Fisher M. Characterizing the target of acute stroke therapy. Stroke. 1997;28(4):866–72.

    CAS  PubMed  Google Scholar 

  16. Pena Silva RA, Heistad DD. Promising neuroprotective effects of the angiotensin-(1–7)-angiotensin-converting enzyme 2-Mas axis in stroke. Exp Physiol. 2014;99(2):342–3. doi:10.1113/expphysiol.2013.076836.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Regenhardt RW, Bennion DM, Sumners C. Cerebroprotective action of angiotensin peptides in stroke. Clin Sci (Lond). 2014;126(3):195–205. doi:10.1042/CS20130324.

    CAS  Google Scholar 

  18. Kagiyama T, Kagiyama S, Phillips MI. Expression of angiotensin type 1 and 2 receptors in brain after transient middle cerebral artery occlusion in rats. Regul Pept. 2003;110(3):241–7.

    CAS  PubMed  Google Scholar 

  19. Chang AY, Li FC, Huang CW, Wu JC, Dai KY, Chen CH, et al. Interplay between brain stem angiotensins and monocyte chemoattractant protein-1 as a novel mechanism for pressor response after ischemic stroke. Neurobiol Dis. 2014;S0969–9961(14):00234.

    Google Scholar 

  20. Mogi M, Kawajiri M, Tsukuda K, Matsumoto S, Yamada T, Horiuchi M. Serum levels of renin-angiotensin system components in acute stroke patients. Geriatr Gerontol Int. 2013. doi:10.1111/ggi.12167.

    Google Scholar 

  21. Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol. 2011;300(4):R804–17. doi:10.1152/ajpregu.00222.2010.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Sumners C, Horiuchi M, Widdop RE, McCarthy C, Unger T, Steckelings UM. Frontiers in research: the protective arms of the renin-angiotensin-system in neurological disease. Clin Exp Pharmacol Physiol. 2013. doi:10.1111/1440–1681.12137.

    Google Scholar 

  23. Jiang T, Gao L, Lu J, Zhang YD. ACE2-Ang-(1–7)-Mas axis in brain: a potential target for prevention and treatment of ischemic stroke. Curr Neuropharmacol. 2013;11(2):209–17. doi:10.2174/1570159X11311020007.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Mecca A, Regenhardt R, O’Connor T, Joseph J, Raizada M, Katovich M, et al. Cerebroprotection by angiotensin (1–7) in endothelin-1 induced ischemic stroke. Exp Physiol 2011. This was the first report of cerebroprotective effects of Ang-(1–7) in ischemic stroke. In addition to demonstrating efficacy of central administration of Ang-(1–7), administration of an ACE2 activator was also shown to induce favorable outcomes.

  25. Regenhardt RW, Mecca AP, Desland F, Ritucci-Chinni PF, Ludin JA, Greenstein D, et al. Centrally administered angiotensin-(1–7) increases the survival of stroke prone spontaneously hypertensive rats. Exp Physiol. 2013. doi:10.1113/expphysiol.2013.075242.

    PubMed  Google Scholar 

  26. Jiang T, Gao L, Shi J, Lu J, Wang Y, Zhang Y. Angiotensin-(1–7) modulates renin-angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats. Pharmacol Res. 2013;67(1):84–93. doi:10.1016/j.phrs.2012.10.014.

    CAS  PubMed  Google Scholar 

  27. Jiang T, Gao L, Guo J, Lu J, Wang Y, Zhang Y. Suppressing inflammation by inhibiting the NF-kappaB pathway contributes to the neuroprotective effect of angiotensin-(1–7) in rats with permanent cerebral ischaemia. Br J Pharmacol. 2012;167(7):1520–32. doi:10.1111/j.1476–5381.2012.02105. This report provided confirmation of the neuroprotective actions of Ang-(1–7) in stroke and additionally provided early evidence regarding its anti-inflammatory effects.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Chen J, Zhao Y, Chen S, Wang J, Xiao X, Ma X, et al. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 2014;79:550–8. doi:10.1016/j.neuropharm.2014.01.004.

    CAS  PubMed  Google Scholar 

  29. Zheng J, Li G, Chen S, Bihl J, Buck J, Zhu Y, et al. Activation of the ACE2/Ang-(1–7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience. 2014;273:39–51. doi:10.1016/j.neuroscience.2014.04.060.

    CAS  PubMed  Google Scholar 

  30. Chen J, Xiao X, Chen S, Zhang C, Chen J, Yi D, et al. Angiotensin-converting enzyme 2 priming enhances the function of endothelial progenitor cells and their therapeutic efficacy. Hypertension. 2013;61(3):681–9. doi:10.1161/HYPERTENSIONAHA.111.00202. This translationally oriented study of the efficacy of ACE2 in stroke employed a protocol that was the first to start treatments after the induction of stroke by peripheral injections.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Zheng JL, Li GZ, Chen SZ, Wang JJ, Olson JE, Xia HJ, et al. Angiotensin converting enzyme 2/Ang-(1–7)/Mas axis protects brain from ischemic injury with a tendency of age-dependence. CNS Neurosci Ther. 2014. doi:10.1111/cns.12233. The use of aged animals in this study allowed for the discovery that the protective effects of Ang-(1–7) are preserved, and even enhanced with age, an important finding in support of future clinical testing of such therapies.

    Google Scholar 

  32. Del Bigio MR, Yan HJ, Buist R, Peeling J. Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke. 1996;27(12):2312–9. discussion 2319-20.

    PubMed  Google Scholar 

  33. da Silveira KD, Coelho FM, Vieira AT, Sachs D, Barroso LC, Costa VV, et al. Anti-inflammatory effects of the activation of the angiotensin-(1–7) receptor, MAS, in experimental models of arthritis. J Immunol. 2010;185(9):5569–76. doi:10.4049/jimmunol.1000314.

    PubMed  Google Scholar 

  34. Giani JF, Munoz MC, Pons RA, Cao G, Toblli JE, Turyn D, et al. Angiotensin-(1–7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2011;300(1):F272–82. doi:10.1152/ajprenal.00278.2010.

    CAS  PubMed  Google Scholar 

  35. Tesanovic S, Vinh A, Gaspari TA, Casley D, Widdop RE. Vasoprotective and atheroprotective effects of angiotensin (1–7) in apolipoprotein E-deficient mice. Arterioscler, Thromb, Vasc Biol. 2010;30(8):1606–13. doi:10.1161/ATVBAHA.110.204453.

    CAS  Google Scholar 

  36. El-Hashim AZ, Renno WM, Raghupathy R, Abduo HT, Akhtar S, Benter IF. Angiotensin-(1–7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-kappaB-dependent pathways. Br J Pharmacol. 2012;166(6):1964–76. doi:10.1111/j.1476–5381.2012.01905.x.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Wosten-van Asperen RM, Lutter R, Specht PA, Moll GN, van Woensel JB, van der Loos CM, et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J Pathol. 2011;225(4):618–27. doi:10.1002/path.2987.

    PubMed  Google Scholar 

  38. Grobe J, Mecca A, Lingis M, Shenoy V, Bolton T, Machado J, et al. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol. 2007;292(2):H736–42.

    CAS  PubMed  Google Scholar 

  39. Grobe JL, Mecca AP, Mao H, Katovich MJ. Chronic angiotensin-(1–7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol. 2006;290(6):H2417–23. doi:10.1152/ajpheart.01170.2005.

    CAS  PubMed  Google Scholar 

  40. Huentelman MJ, Grobe JL, Vazquez J, Stewart JM, Mecca AP, Katovich MJ, et al. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp Physiol. 2005;90(5):783–90. doi:10.1113/expphysiol.2005.031096.

    CAS  PubMed  Google Scholar 

  41. Ferreira AJ, Jacoby BA, Araujo CA, Macedo FA, Silva GA, Almeida AP, et al. The nonpeptide angiotensin-(1–7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. Am J Physiol Heart Circ Physiol. 2007;292(2):H1113–9. doi:10.1152/ajpheart.00828.2006.

    CAS  PubMed  Google Scholar 

  42. Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179(11):1048––1054. doi:10.1164/rccm.200811–1678OC.

    PubMed Central  PubMed  Google Scholar 

  43. Ferreira AJ, Santos RA, Almeida AP. Angiotensin-(1-7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension. 2001;38(3 Pt 2):665–8.

    CAS  PubMed  Google Scholar 

  44. Santos RA, Ferreira AJ, Nadu AP, Braga AN, de Almeida AP, Campagnole-Santos MJ, et al. Expression of an angiotensin-(1–7)-producing fusion protein produces cardioprotective effects in rats. Physiol Genomics. 2004;17(3):292–9. doi:10.1152/physiolgenomics.00227.2003.

    CAS  PubMed  Google Scholar 

  45. Petty WJ, Miller AA, McCoy TP, Gallagher PE, Tallant EA, Torti FM. Phase I and pharmacokinetic study of angiotensin-(1–7), an endogenous antiangiogenic hormone. Clin Cancer Res. 2009;15(23):7398–404. doi:10.1158/1078–0432.CCR-09–1957.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Passos-Silva DG, Verano-Braga T, Santos RA. Angiotensin-(1–7): beyond the cardio-renal actions. Clin Sci (Lond). 2013;124(7):443–56. doi:10.1042/CS20120461.

    CAS  Google Scholar 

  47. Regenhardt RW, Desland F, Mecca AP, Pioquinto DJ, Afzal A, Mocco J, et al. Anti-inflammatory effects of angiotensin-(1–7) in ischemic stroke. Neuropharmacology. 2013;71C:154–63. doi:10.1016/j.neuropharm.2013.03.025. This study examined many of the potential inflammatory cytokines that may be suppressed by Ang-(1–7)/Mas signaling and made contributions to our understanding of the cellular localization of Mas in the stroke brain.

    Google Scholar 

  48. Iadecola C, Zhang F, Xu S, Casey R, Ross M. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab. 1995;15(3):378–84.

    CAS  PubMed  Google Scholar 

  49. Meng Y, Yu CH, Li W, Li T, Luo W, Huang S, et al. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-kappaB pathway. Am J Respir Cell Mol Biol. 2013. doi:10.1165/rcmb.2012–0451OC. 22.

    Google Scholar 

  50. Santos SH, Andrade JM, Fernandes LR, Sinisterra RD, Sousa FB, Feltenberger JD, et al. Oral angiotensin-(1–7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-kappaB in rats fed with high-fat diet. Peptides. 2013;46:47–52. doi:10.1016/j. peptides .2013.05.010.

    CAS  PubMed  Google Scholar 

  51. Zhang F, Ren J, Chan K, Chen H. Angiotensin-(1–7) regulates angiotensin II-induced VCAM-1 expression on vascular endothelial cells. Biochem Biophys Res Commun. 2013;430(2):642–6. doi:10.1016/j.bbrc.2012.11.098.

    CAS  PubMed  Google Scholar 

  52. Gaddam RR, Chambers S, Bhatia M. ACE and ACE2 in inflammation: a tale of two enzymes. Inflamm Allergy Drug Targets 2014IADT-EPUB-61371 [pii].

  53. Zhang Z, Chen L, Zhong J, Gao P, Oudit GY. ACE2/Ang-(1–7) signaling and vascular remodeling. Sci China Life Sci. 2014;57(8):802–8. doi:10.1007/s11427–014–4693–3.

    CAS  PubMed  Google Scholar 

  54. Zhang Y, Lu J, Shi J, Lin X, Dong J, Zhang S, et al. Central administration of angiotensin-(1–7) stimulates nitric oxide release and upregulates the endothelial nitric oxide synthase expression following focal cerebral ischemia/reperfusion in rats. Neuropeptides. 2008;42(5–6):593–600. doi:10.1016/j.npep.2008.09.005.

    CAS  PubMed  Google Scholar 

  55. Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L, et al. Angiotensin-(1-7) induces cerebral ischemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol. 2014. doi:10.1111/bph.12770.

    Google Scholar 

  56. Rentzsch B, Todiras M, Iliescu R, Popova E, Campos LA, Oliveira ML, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension. 2008;52(5):967–73. doi:10.1161/HYPERTENSIONAHA.108.114322.

    CAS  PubMed  Google Scholar 

  57. Fraga-Silva RA, Costa-Fraga FP, Murca TM, Moraes PL, Martins Lima A, Lautner RQ, et al. Angiotensin-converting enzyme 2 activation improves endothelial function. Hypertension. 2013;61(6):1233–8. doi:10.1161/HYPERTENSIONAHA.111.00627.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Gu Q, Wang B, Zhang XF, Ma YP, Liu JD, Wang XZ. Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc Pathol 2014 S1054-8807(14)00060-X [pii].

  59. Shenoy V, Gjymishka A, Yagna J, Qi Y, Afzal A, Rigatto K, et al. Diminazene attenuates pulmonary hypertension and improves angiogenic progenitor cell functions in experimental models. Am J Respir Crit Care Med. 2013. doi:10.1164/rccm.201205-0880OC.

    PubMed Central  PubMed  Google Scholar 

  60. Li G, Liu Y, Zhu Y, Liu A, Xu Y, Li X, et al. ACE2 activation confers endothelial protection and attenuates neointimal lesions in prevention of severe pulmonary arterial hypertension in rats. Lung. 2013;191(4):327–36. doi:10.1007/s00408-013-9470-8.

    CAS  PubMed  Google Scholar 

  61. Wang Y, Tikellis C, Thomas MC, Golledge J. Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis. 2013;226(1):3–8. doi:10.1016/j.atherosclerosis.2012.08.018.

    CAS  PubMed  Google Scholar 

  62. Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton PM, et al. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation. 2005;111(14):1806–13. doi:10.1161/01.CIR.0000160867.23556.7D.

    CAS  PubMed  Google Scholar 

  63. Deliu E, Brailoiu GC, Eguchi S, Hoffman NE, Rabinowitz JE, Tilley DG, et al. Direct evidence of intracrine angiotensin II signaling in neurons. Am J Physiol Cell Physiol. 2014;306(8):C736–44. doi:10.1152/ajpcell.00131.2013.

    CAS  PubMed  Google Scholar 

  64. Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H, et al. Angiotensin II sustains brain inflammation in mice via TGF-beta. J Clin Invest. 2010;120(8):2782–94. doi:10.1172/JCI41709.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Bagby SP, LeBard LS, Luo Z, Speth RC, Ogden BE, Corless CL. Angiotensin II type 1 and 2 receptors in conduit arteries of normal developing microswine. Arterioscler, Thromb, Vasc Biol. 2002;22(7):1113–21.

    CAS  Google Scholar 

  66. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20(5):953–70.

    CAS  PubMed  Google Scholar 

  67. Koka V, Huang XR, Chung AC, Wang W, Truong LD, Lan HY. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008;172(5):1174–83. doi:10.2353/ajpath.2008.070762.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Patel VB, Clarke N, Wang Z, Fan D, Parajuli N, Basu R, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. J Mol Cell Cardiol. 2014;66:167–76. doi:10.1016/j.yjmcc.2013.11.017.

    CAS  PubMed  Google Scholar 

  69. Kulemina LV, Ostrov DA. Prediction of off-target effects on angiotensin-converting enzyme 2. J Biomol Screen. 2011;16(8):878–88510.1177/1087057111413919.

    CAS  PubMed  Google Scholar 

  70. Kuriakose S, Uzonna JE. Diminazene aceturate (Berenil), a new use for an old compound? Int Immunopharmacol. 2014;21(2):342–5.

    CAS  PubMed  Google Scholar 

  71. Gallagher PE, Ferrario CM, Tallant EA. MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am J Physiol Cell Physiol. 2008;295(5):C1169–74. doi:10.1152/ajpcell.00145.2008.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME. Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP 24 kinase signaling. Free Radic Biol Med. 2013;65:1060–8. doi:10.1016/j.freeradbiomed.2013.08.183; 10.1016/j.freeradbiomed.2013.08.183. This study provided convincing evidence for the role of phosphatase activation and subsequent inhibition of MAPK signaling by Ang-(1-7) as part of its action to reduce inflammation.

    CAS  PubMed  Google Scholar 

  73. Sui YB, Chang JR, Chen WJ, Zhao L, Zhang BH, Yu YR, et al. Angiotensin-(1-7) inhibits vascular calcification in rats. Peptides. 2013;42:25–34. doi:10.1016/j.peptides.2012.12.023.

    CAS  PubMed  Google Scholar 

  74. Kagiyama T, Kagiyama S, Phillips MI. Expression of angiotensin type 1 and 2 receptors in brain after transient middle cerebral artery occlusion in rats. Regul Pept. 2003;110(3):241–7.

    CAS  PubMed  Google Scholar 

  75. Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the angiotensin converting enzyme 2-angiotensin (1-7)-Mas receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne). 2014;4:201. doi:10.3389/fendo.2013.00201.

    Google Scholar 

  76. Peiro C, Vallejo S, Gembardt F, Palacios E, Novella S, Azcutia V, et al. Complete blockade of the vasorelaxant effects of angiotensin-(1-7) and bradykinin in murine microvessels by antagonists of the receptor Mas. J Physiol. 2013;591(Pt 9):2275–85. doi:10.1113/jphysiol.2013.251413.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Lu J, Zhang Y, Shi J. Effects of intracerebroventricular infusion of angiotensin-(1-7) on bradykinin formation and the kinin receptor expression after focal cerebral ischemia-reperfusion in rats. Brain Res. 2008;1219:127–35. doi:10.1016/j.brainres.2008.04.057.

    CAS  PubMed  Google Scholar 

  78. Raffai G, Khang G, Vanhoutte PM. Angiotensin-(1-7) augments endothelium-dependent relaxations of porcine coronary arteries to bradykinin by inhibiting ACE1. J Cardiovasc Pharmacol. 2014. doi:10.1097/FJC.0000000000000069.

    Google Scholar 

  79. Heitsch H, Brovkovych S, Malinski T, Wiemer G. Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension. 2001;37(1):72–6.

    CAS  PubMed  Google Scholar 

  80. Jaiswal N, Diz DI, Chappell MC, Khosla MC, Ferrario CM. Stimulation of endothelial cell prostaglandin production by angiotensin peptides. Characterization of receptors. Hypertension. 1992;19(2 Suppl):II49–55.

    CAS  PubMed  Google Scholar 

  81. Wiemer G, Dobrucki LW, Louka FR, Malinski T, Heitsch H. AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1-7) on the endothelium. Hypertension. 2002;40(6):847–52.

    CAS  PubMed  Google Scholar 

  82. Costa MA, Lopez Verrilli MA, Gomez KA, Nakagawa P, Pena C, Arranz C, et al. Angiotensin-(1-7) upregulates cardiac nitric oxide synthase in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2010;299(4):H1205-11. doi:10.1152/ajpheart.00850.2009.

    PubMed  Google Scholar 

  83. Lara Lda S, Cavalcante F, Axelband F, De Souza AM, Lopes AG, Caruso-Neves C. Involvement of the Gi/o/cGMP/PKG pathway in the AT2-mediated inhibition of outer cortex proximal tubule Na+-ATPase by Ang-(1-7). Biochem J. 2006;395(1):183–90.

    PubMed  Google Scholar 

  84. De Souza AM, Lopes AG, Pizzino CP, Fossari RN, Miguel NC, Cardozo FP, et al. Angiotensin II and angiotensin-(1-7) inhibit the inner cortex Na+-ATPase activity through AT2 receptor. Regul Pept. 2004;120(1-3):167–75. doi:10.1016/j.regpep.2004.03.005.

    PubMed  Google Scholar 

  85. Muthalif MM, Benter IF, Karzoun N, Fatima S, Harper J, Uddin MR, et al. 20-Hydroxyeicosatetraenoic acid mediates calcium/calmodulin-dependent protein kinase II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. Proc Natl Acad Sci U S A. 1998;95(21):12701–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Gorelik G, Carbini LA, Scicli AG. Angiotensin 1-7 induces bradykinin-mediated relaxation in porcine coronary artery. J Pharmacol Exp Ther. 1998;286(1):403–10.

    CAS  PubMed  Google Scholar 

  87. Walters PE, Gaspari TA, Widdop RE. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension. 2005;45(5):960–6.

    CAS  PubMed  Google Scholar 

  88. Villela D, Leonhardt J, Patel N, Jospeh J, Kirsch S, Hallberg A, et al. Angiotensin AT2-receptor and receptor Mas: a complex liaison. Clin Sci (Lond) 2014; In Press.

  89. Durand MJ, Raffai G, Weinberg BD, Lombard JH. Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2010;299(4):H1024–33. doi:10.1152/ajpheart.00328.2010.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Bosnyak S, Widdop RE, Denton KM, Jones ES. Differential mechanisms of ang (1-7)-mediated vasodepressor effect in adult and aged candesartan-treated rats. Int J Hypertens. 2012;2012:192567. doi:10.1155/2012/192567.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Roks AJ, Nijholt J, van Buiten A, van Gilst WH, de Zeeuw D, Henning RH. Low sodium diet inhibits the local counter-regulator effect of angiotensin-(1-7) on angiotensin II. J Hypertens. 2004;22(12):2355–61.

    CAS  PubMed  Google Scholar 

  92. Pinheiro SV, Silva AC S e, Sampaio WO, de Paula RD, Mendes EP, Bontempo ED, et al. Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. Hypertension. 2004;44(4):490–6. doi:10.1161/01.HYP.0000141438.64887.42.

    CAS  PubMed  Google Scholar 

  93. Castro CH, Santos RA, Ferreira AJ, Bader M, Alenina N, Almeida AP. Evidence for a functional interaction of the angiotensin-(1-7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Hypertension. 2005;46(4):937–42. doi:10.1161/01.HYP.0000175813.04375.8a. 26.

    PubMed  Google Scholar 

  94. AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem. 2001;276(43):39721–6. doi:10.1074/jbc.M105253200.

    CAS  PubMed  Google Scholar 

  95. Abadir PM, Periasamy A, Carey RM, Siragy HM. Angiotensin II type 2 receptor-bradykinin B2 receptor functional heterodimerization. Hypertension. 2006;48(2):316–22.

    CAS  PubMed  Google Scholar 

  96. Karip E, Turu G, Supeki K, Szidonya L, Hunyady L. Cross-inhibition of angiotensin AT1 receptors supports the concept of receptor oligomerization. Neurochem Int. 2007;51(5):261–7.

    CAS  PubMed  Google Scholar 

  97. Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C. Distribution of angiotensin II type-2 receptor (AT2) mRNA expression in the adult rat brain. J Comp Neurol. 1996;373(3):322–39. doi:10.1002/(SICI)1096-9861(19960923)373:3 < 322::AID-CNE2 > 3.0.CO;2-4.

    CAS  PubMed  Google Scholar 

  98. Miyoshi M, Miyano K, Moriyama N, Taniguchi M, Watanabe T. Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide-induced stimulation of rat microglial cells by suppressing nuclear factor kappaB and activator protein-1 activation. Eur J Neurosci. 2008;27(2):343–51. doi:10.1111/j.1460-9568.2007.06014.

    PubMed  Google Scholar 

  99. Valero-Esquitino V, Lucht K, Namsolleck P, Monnet-Tschudi F, Stubbe T, Lucht F, et al. Direct angiotensin AT2-receptor stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice. Clin Sci (Lond) 2014CS20130601 [pii].

  100. Makino I, Shibata K, Ohgami Y, Fujiwara M, Furukawa T. Transient upregulation of the AT2 receptor mRNA level after global ischemia in the rat brain. Neuropeptides. 1996;30(6):596–601.

    CAS  PubMed  Google Scholar 

  101. Li J, Culman J, Hortnagl H, Zhao Y, Gerova N, Timm M, et al. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASB J. 2005;19(6):617–9.

    CAS  Google Scholar 

  102. Ohshima K, Mogi M, Nakaoka H, Iwanami J, Min LJ, Kanno H, et al. Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1-7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade. Hypertension. 2014;63(3):e53–9.

    CAS  PubMed  Google Scholar 

  103. Gembardt F, van Veghel R, Coffman TM, Schultheiss HP, Danser AH, Walther T. Hemodynamic effects of vasorelaxant compounds in mice lacking one, two or all three angiotensin II receptors. Hypertens Res. 2012;35(5):547–51. doi:10.1038/hr.2012.5.

    CAS  PubMed  Google Scholar 

  104. Lemos VS, Silva DM, Walther T, Alenina N, Bader M, Santos RA. The endothelium-dependent vasodilator effect of the nonpeptide Ang(1-7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J Cardiovasc Pharmacol. 2005;46(3):274–9.

    CAS  PubMed  Google Scholar 

  105. Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27(3 Pt 2):523–8.

    CAS  PubMed  Google Scholar 

  106. Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol. 2005;289(4):H1560–6. doi:10.1152/ajpheart.00941.2004.

    CAS  PubMed  Google Scholar 

  107. Dharmani M, Mustafa MR, Achike FI, Sim MK. Effects of angiotensin 1-7 on the actions of angiotensin II in the renal and mesenteric vasculature of hypertensive and streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007;561(1–3):144–50.

    CAS  PubMed  Google Scholar 

  108. Silva DM, Vianna HR, Cortes SF, Campagnole-Santos MJ, Santos RA, Lemos VS. Evidence for a new angiotensin-(1-7) receptor subtype in the aorta of Sprague-Dawley rats. Peptides. 2007;28(3):702–7.

    CAS  PubMed  Google Scholar 

  109. Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, et al. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci U S A. 2005;102(25):9050–90550501112102.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the following support for our work: the National Heart, Lung and Blood Institute (HL076803 and 2T32HL083810-06A1), the American Heart Association Greater Southeast Affiliate (12PRE11940010), and the McKnight Brain Institute.

Compliance with Ethics Guidelines

Conflict of Interest

Douglas M. Bennion, Emily Haltigan, Robert W. Regenhardt, U. Muscha Steckelings, and Colin Sumners declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas M. Bennion or Colin Sumners.

Additional information

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennion, D.M., Haltigan, E., Regenhardt, R.W. et al. Neuroprotective Mechanisms of the ACE2–Angiotensin-(1-7)–Mas Axis in Stroke. Curr Hypertens Rep 17, 3 (2015). https://doi.org/10.1007/s11906-014-0512-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0512-2

Keywords

Navigation