Skip to main content
Log in

Multiscale Modelling of Fluid and Drug Transport in Vascular Tumours

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model for fluid and drug transport through the leaky neovasculature and porous interstitium of a solid tumour is developed. The transport problems are posed on a micro-scale characterized by the inter-capillary distance, and the method of multiple scales is used to derive the continuum equations describing fluid and drug transport on the length scale of the tumour (under the assumption of a spatially periodic microstructure). The fluid equations comprise a double porous medium, with coupled Darcy flow through the interstitium and vasculature, whereas the drug equations comprise advection–reaction equations; in each case the dependence of the transport coefficients on the vascular geometry is determined by solving micro-scale cell problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arbogast, T., Douglas, J., Hornung, U., 1990. Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836.

    Article  MATH  MathSciNet  Google Scholar 

  • Arbogast, T., Douglas, J., Hornung, U., 1991. Modeling of naturally fractured reservoirs by formal homogenization techniques. In: Frontiers in Pure and Applied Mathematics, pp. 1–19. Elsevier, Amsterdam.

    Google Scholar 

  • Arbogast, T., Lehr, H., 2006. Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10, 291–302.

    Article  MathSciNet  Google Scholar 

  • Beavers, G., Joseph, D., 1967. Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207.

    Article  Google Scholar 

  • Cameliet, P., Jain, R., 2000. Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    Article  Google Scholar 

  • Chapman, S., Shipley, R., Jawad, R., 2008. Multiscale modeling of fluid transport in tumors. Bull. Math. Biol. 70, 2334–2357.

    Article  MATH  MathSciNet  Google Scholar 

  • Fåhraeus, R., 1928. Die strölmungsverhältnisse und die verteilung der blutzellen im gefäbsystem. Zur frage der bedeutung der intravasculären erythrocytenaggregation. Klin. Wochenschr. 7, 100–106.

    Article  Google Scholar 

  • Fåhraeus, R., Lindqvist, T., 1931. The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562–568.

    Google Scholar 

  • Hashizume, H., Baluk, P., Morikawa, S., McLean, J., Thurston, G., Roberge, S., Jain, R., McDonald, D., 2000. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380.

    Google Scholar 

  • Heldin, C., Rubin, K., Pietras, K., Ostman, A., 2004. A high interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813.

    Article  Google Scholar 

  • Hicks, K., Fleming, Y., Siim, B., Koch, C., Wilson, W., 1998. Extravascular diffusion of tirapazamine: Effect of metabolic consumption assessed using the multicellular layer model. Int. J. Radiat. Oncol. Biol. Phys. 42, 641–649.

    Google Scholar 

  • Hicks, K., Pruijn, F., Secomb, T.W., Hay, M., Hsu, R.H., Brown, J., Denny, W., Dewhirst, M., Wilson, W., 2006. Use of three-dimensional tissue cultures to model extravascular transport and predict In vivo activity of hypoxia-targeted anticancer drugs. J. Nat. Cancer Inst. 98, 1118–1128.

    Article  Google Scholar 

  • Intaglietta, M., Silverman, N., Tompkins, W., 1975. Capillary flow velocity in vivo and in situ by television methods. Microvasc. Res. 10, 165–179.

    Article  Google Scholar 

  • Jäger, W., Mikelić, A., 2000. On the interface boundary conditions by Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127.

    Article  MATH  MathSciNet  Google Scholar 

  • Jäger, W., Mikelić, A., Neuss, M., 2001. Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22, 2006–2028.

    Article  MATH  Google Scholar 

  • Jain, R., 1987. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6, 559–593.

    Article  Google Scholar 

  • Jain, R., 1989. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl. Cancer Inst. 81(8), 570–576.

    Article  Google Scholar 

  • Jain, R., 1990. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 9, 253–266.

    Article  Google Scholar 

  • Jang, S., Wientjies, M., Lu, D., Au, J., 2003. Drug delivery and transport to solid tumors. Pharm. Res. 20, 1337–1350.

    Article  Google Scholar 

  • Jones, I., 1973. Low Reynolds number flow past a porous spherical shell. Proc. Camb. Philos. Soc. 73, 231–238.

    Article  MATH  Google Scholar 

  • Kenner, T., 1989. The measurement of blood density and its meaning. Basic Res. Cardiol. 84, 111–124.

    Article  Google Scholar 

  • Kirkpatrick, J., Brizel, D.M., Dewhirst, M., 2003. A mathematical model of tumor oxygen and glucose mass transport and metabolism with complex reaction kinetics. Radiat. Res. 159, 336–344.

    Article  Google Scholar 

  • Konerding, M., Malkusch, W., Klapthor, B., Van Ackern, C., Fait, E., Hill, S., Parkins, C., Chaplin, D., Presta, M., Denekamp, J., 1999. Evidence for characteristic vascular patterns in solid tumours: Quantitative studies using corrosion casts. Br. J. Cancer 80, 724.

    Article  Google Scholar 

  • Konerding, M., Fait, E., Gaumann, A., et al., 2001. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br. J. Cancer 84, 1354–1362.

    Article  Google Scholar 

  • Less, J., Skalak, T., Sevick, E., Jain, R., 1991. Microvascular architecture in a mammary carcinoma: Branching patterns and vessel dimensions. Cancer Res. 51, 265–273.

    Google Scholar 

  • Minchinton, A.I., Tannock, I.F., 2006. Drug penetration in solid tumours. Nat. Rev. Cancer 6(8), 583–592.

    Article  Google Scholar 

  • Modok, S., Hyde, P., Mellor, H., Roose, T., Callaghan, R., 2006. Diffusivity and distribution of vinblastine in three-dimensional tumour tissue: Experimental and mathematical modelling. Eur. J. Cancer 42, 2404–2413.

    Article  Google Scholar 

  • Modok, S., Scott, R., Alderden, R., Hall, M., Mellor, H., Bohic, S., Roose, T., Hambley, T., Callaghan, R., 2007. Transport kinetics of four-and six-coordinate platinum compounds in the multicell layer tumour model. Br. J. Cancer 97, 194–200.

    Article  Google Scholar 

  • Pries, A., Secomb, T., 2005. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289, H2657–H2664.

    Article  Google Scholar 

  • Pries, A., Ley, K., Claassen, M., Gaehtgens, P., 1989. Red cell distribution at microvascular bifurcations. Microvasc. Res. 38, 81–101.

    Article  Google Scholar 

  • Pries, A., Neuhaus, D., Gaehtgens, P., 1992. Blood viscosity in tube flow: Dependence on diameter and hematocrit. Am. J. Physiol. 263, H1770–H1778.

    Google Scholar 

  • Pries, A., Cornelissen, A., Sloot, A., Hinkeldey, M., Dreher, M., Höpfner, M., Dewhirst, M., Secomb, T., 2009. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput. Biol. 5.

  • Rand, P., Lacombe, E., Hunt, H., Austin, W., 1964. Viscosity of normal human blood under normothermic and hypothermic conditions. J. Appl. Physiol. 19, 117–122.

    Google Scholar 

  • Saffman, P., 1971. On the boundary condition at the surface of a porous medium. Stud. Appl. Math. I, volume 2, 93–101.

    Google Scholar 

  • Shipley, R.J., 2008. Multiscale modelling of fluid and drug transport in vascular tumours. PhD thesis, University of Oxford.

  • Yao, D., Ding, S., Burchell, B., Wolf, C.R., Friedberg, T., 2000. Detoxication of vinca alkaloids by human P450 CYP3A4-mediated metabolism: Implications for the development of drug resistance. J. Pharmacol. Exp. Ther. 294, 387–395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca J. Shipley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shipley, R.J., Chapman, S.J. Multiscale Modelling of Fluid and Drug Transport in Vascular Tumours. Bull. Math. Biol. 72, 1464–1491 (2010). https://doi.org/10.1007/s11538-010-9504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9504-9

Keywords

Navigation