Skip to main content
Log in

Investigation of Endogenous Compounds for Assessing the Drug Interactions in the Urinary Excretion Involving Multidrug and Toxin Extrusion Proteins

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Multidrug and toxin extrusion proteins (MATEs) are multispecific organic cation transporters mediating the efflux of various cationic drugs into the urine. The present study aimed at identifying endogenous compounds in human plasma and urine specimens as biomarkers to evaluate drug interactions involving MATEs in the kidney without administration of their exogenous probe drugs.

Methods

An untargeted metabolomic analysis was performed using urine and plasma samples from healthy volunteers and mice treated with or without the potent MATE inhibitor, pyrimethamine. Plasma and urinary concentrations of candidate markers were measured using liquid chromatography-mass spectrometry. Transport activities were determined in MATE- or OCT2-expressing HEK293 cells. The deuterium-labeled compounds of candidates were administered to mice for pharmacokinetics study.

Results

Urinary excretion of eleven compounds including thiamine and carnitine was significantly lower in the pyrimethamine-treatment group in humans and mice, whereas no endogenous compound was noticeably accumulated in the plasma. The renal clearance of thiamine and carnitine was decreased by 70%–84% and 90%–94% (p < 0.05), respectively, in human. The specific uptake of thiamine was observed in MATE1-, MATE2-K- or OCT2-expressing HEK293 cells with Km of 3.5 ± 1.0, 3.9 ± 0.8 and 59.9 ± 6.7 μM, respectively. The renal clearance of carnitine-d 3 was decreased by 62% in mice treated with pyrimethamine.

Conclusions

Our findings indicate that MATEs account for the efflux of thiamine and perhaps carnitine as well as drugs into the urine. The urinary excretion of thiamine is useful to detect drug interaction involving MATEs in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

area under the plasma concentration–time curve

BBM:

brush border membrane

BBMV:

brush border membrane vesicles

CLR :

renal clearance

CLtot :

total plasma clearance

dCyd:

2′-deoxycytidine

GFR:

glomerular filtration rate

LC-MS:

liquid chromatography-mass spectrometry

MATE:

multidrug and toxin extrusion protein

NMN:

N-methylnicotinamide

OCT:

organic cation transporter

PYR:

pyrimethamine

TEA:

tetraethylammonium

Xurine :

urinary excretion amount

REFERENCES

  1. Yonezawa A, Inui K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol. 2011;164(7):1817–25.

    Article  CAS  PubMed  Google Scholar 

  2. Moriyama Y, Hiasa M, Matsumoto T, Omote H. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica. 2008;38(7–8):1107–18.

    Article  CAS  PubMed  Google Scholar 

  3. Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol. 2007;74(2):359–71.

    Article  CAS  PubMed  Google Scholar 

  4. Damme K, Nies AT, Schaeffeler E, Schwab M. Mammalian MATE (SLC47A) transport proteins: impact on efflux of endogenous substrates and xenobiotics. Drug Metab Rev. 2011;43(4):499–523.

    Article  CAS  PubMed  Google Scholar 

  5. Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K. Targeted disruption of the multidrug and toxin extrusion 1 (Mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol. 2009;75(6):1280–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kajiwara M, Masuda S, Watanabe S, Terada T, Katsura T, Inui K. Renal tubular secretion of varenicline by multidrug and toxin extrusion (MATE) transporters. Drug Metab Pharmacokinet. 2012;27(6):563–9.

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol. 2010;80(11):1762–7.

    Article  CAS  PubMed  Google Scholar 

  8. Li Q, Peng X, Yang H, Wang H, Shu Y. Deficiency of multidrug and toxin extrusion 1 enhances renal accumulation of paraquat and deteriorates kidney injury in mice. Mol Pharm. 2011;8(6):2476–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Matsushima S, Maeda K, Inoue K, Ohta KY, Yuasa H, Kondo T, et al. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine. Drug Metab Dispos. 2009;37(3):555–9.

    Article  CAS  PubMed  Google Scholar 

  10. Tsuda M, Terada T, Ueba M, Sato T, Masuda S, Katsura T, et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther. 2009;329(1):185–91.

    Article  CAS  PubMed  Google Scholar 

  11. Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K, et al. Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther. 2010;333(1):341–50.

    Article  CAS  PubMed  Google Scholar 

  12. Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340(2):393–403.

    Article  CAS  PubMed  Google Scholar 

  13. Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89(6):837–44.

    Article  CAS  PubMed  Google Scholar 

  14. Ito S, Kusuhara H, Kumagai Y, Moriyama Y, Inoue K, Kondo T, et al. N-Methylnicotinamide is an endogenous probe for evaluation of drug-drug interactions involving multidrug and toxin extrusions (MATE1 and MATE2-K). Clin Pharmacol Ther. 2012;92(5):635–41.

    Article  CAS  PubMed  Google Scholar 

  15. Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J Proteome Res. 2011;10(6):2842–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Krumpochova P, Sapthu S, Brouwers JF, de Haas M, de Vos R, Borst P, et al. Transportomics: screening for substrates of ABC transporters in body fluids using vesicular transport assays. FASEB J. 2012;26(2):738–47.

    Article  CAS  PubMed  Google Scholar 

  17. Kato K, Kusuhara H, Kumagai Y, Ieiri I, Mori H, Ito S, et al. Association of multidrug resistance-associated protein 2 single nucleotide polymorphism rs12762549 with the basal plasma levels of phase II metabolites of isoflavonoids in healthy Japanese individuals. Pharmacogenet Genomics. 2012;22(5):344–54.

    CAS  PubMed  Google Scholar 

  18. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma. 2010;11:395.

    Article  Google Scholar 

  19. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;D603-10.

  20. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998;54(2):342–52.

    CAS  PubMed  Google Scholar 

  22. Hirano M, Maeda K, Shitara Y, Sugiyama Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther. 2004;311(1):139–46.

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  PubMed  Google Scholar 

  24. Yamaoka K, Tanigawara Y, Nakagawa T, Uno T. A pharmacokinetic analysis program (multi) for microcomputer. J Pharmacobiodyn. 1981;4(11):879–85.

    Article  CAS  PubMed  Google Scholar 

  25. US Food and Drug Administration. Guidance for Industry: drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations (Draft guidance) (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf) (14 September 2012).

  26. Finglas PM. Thiamin. Int J Vitam Nutr Res. 1993;63(4):270–4.

    CAS  PubMed  Google Scholar 

  27. Steiber A, Kerner J, Hoppel CL. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med. 2004;25(5–6):455–73.

    Article  CAS  PubMed  Google Scholar 

  28. Moyer JD, Malinowski N, Ayers O. Salvage of circulating pyrimidine nucleosides by tissues of the mouse. J Biol Chem. 1985;260(5):2812–8.

    CAS  PubMed  Google Scholar 

  29. Lynch PL, Young IS. Determination of thiamine by high-performance liquid chromatography. J Chromatogr A. 2000;881(1–2):267–84.

    Article  CAS  PubMed  Google Scholar 

  30. Bain MA, Milne RW, Evans AM. Disposition and metabolite kinetics of oral L-carnitine in humans. J Clin Pharmacol. 2006;46(10):1163–70.

    Article  CAS  PubMed  Google Scholar 

  31. Cao Y, Wang YX, Liu CJ, Wang LX, Han ZW, Wang CB. Comparison of pharmacokinetics of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine after single oral administration of L-carnitine in healthy volunteers. Clin Invest Med. 2009;32(1):E13–9.

    CAS  PubMed  Google Scholar 

  32. Hale JT, Bigelow JC, Mathews LA, McCormack JJ. Analytical and pharmacokinetic studies with 5-chloro-2′-deoxycytidine. Biochem Pharmacol. 2002;64(10):1493–502.

    Article  CAS  PubMed  Google Scholar 

  33. Gastaldi G, Cova E, Verri A, Laforenza U, Faelli A, Rindi G. Transport of thiamin in rat renal brush border membrane vesicles. Kidney Int. 2000;57(5):2043–54.

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe S, Tsuda M, Terada T, Katsura T, Inui K. Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1-deficient mice. J Pharmacol Exp Ther. 2010;334(2):651–6.

    Article  CAS  PubMed  Google Scholar 

  35. Ashokkumar B, Vaziri ND, Said HM. Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: cellular and molecular mechanisms. Am J Physiol Renal Physiol. 2006;291(4):F796–805.

    Article  CAS  PubMed  Google Scholar 

  36. Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet. 1999;21(1):91–4.

    Article  CAS  PubMed  Google Scholar 

  37. Elwi AN, Damaraju VL, Baldwin SA, Young JD, Sawyer MB, Cass CE. Renal nucleoside transporters: physiological and clinical implications. Biochem Cell Biol. 2006;84(6):844–58.

    Article  CAS  PubMed  Google Scholar 

  38. Weber W, Nitz M, Looby M. Nonlinear kinetics of the thiamine cation in humans: saturation of nonrenal clearance and tubular reabsorption. J Pharmacokinet Biopharm. 1990;18(6):501–23.

    Article  CAS  PubMed  Google Scholar 

  39. Dutta B, Huang W, Molero M, Kekuda R, Leibach FH, Devoe LD, et al. Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem. 1999;274(45):31925–9.

    Article  CAS  PubMed  Google Scholar 

  40. Evans AM, Fornasini G. Pharmacokinetics of L-carnitine. Clin Pharmacokinet. 2003;42(11):941–67.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURE

We thank K. Taguchi, N. Hagima, S. Kamigaso, and K. Iwata of the Taisho Pharmaceutical Company for their skilled and expert technical assistance.

The clinical study was conducted as the NEDO MicroDose-PJ, sponsored by the New Energy and Industrial Technology Development Organization (NEDO), Japan. This study was supported by a Grant-in-Aid for Scientific Research (S) [Grant 24229002], for Scientific Research (B) [Grant 23390034] and for Challenging Exploratory Research [24659071] from Japan Society for the Promotion of Science, Japan, and Scientific Research on Innovative Areas HD-Physiology [Grant 23136101] from the Ministry of Education, Science, and Culture of Japan. It was also supported by a Grant-in-Aid from The Nakatomi Foundation.

K. Kato and H. Mori are full-time employees of Taisho Pharmaceutical Company. The authors have no conflicts of interest that are directly relevant to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Sugiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, K., Mori, H., Kito, T. et al. Investigation of Endogenous Compounds for Assessing the Drug Interactions in the Urinary Excretion Involving Multidrug and Toxin Extrusion Proteins. Pharm Res 31, 136–147 (2014). https://doi.org/10.1007/s11095-013-1144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1144-y

KEY WORDS

Navigation