Skip to main content

Advertisement

Log in

Evaluation of 99mTechnetium-Mebrofenin and 99mTechnetium-Sestamibi as Specific Probes for Hepatic Transport Protein Function in Rat and Human Hepatocytes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This study characterized 99mTc-Mebrofenin (MEB) and 99mTc-Sestamibi (MIBI) hepatic transport and preferential efflux routes (canalicular vs. basolateral) in rat and human sandwich-cultured hepatocytes (SCH).

Methods

99mTc-MEB and 99mTc-MIBI disposition was determined in suspended hepatocytes and in SCH in the presence and absence of inhibitors and genetic knockdown of breast cancer resistance protein (Bcrp).

Results

The general organic anion transporting polypeptide (Oatp/OATP) inhibitor rifamycin SV reduced initial 99mTc-MEB uptake in rat and human suspended hepatocytes. Initial 99mTc-MIBI uptake in suspended rat hepatocytes was not Na+-dependent or influenced by inhibitors. Multidrug resistance-associated protein (Mrp2/MRP2) inhibitors decreased 99mTc-MEB canalicular efflux in rat and human SCH. 99mTc-MEB efflux in human SCH was predominantly canalicular (45.8 ± 8.6%) and ∼3-fold greater than in rat SCH. 99mTc-MIBI canalicular efflux was similar in human and rat SCH; basolateral efflux was 37% greater in human than rat SCH. 99mTc-MIBI cellular accumulation, biliary excretion index and in vitro biliary clearance in rat SCH were unaffected by Bcrp knockdown.

Conclusion

99mTc-MEB hepatic uptake is predominantly Oatp-mediated with biliary excretion by Mrp2. 99mTc-MIBI appears to passively diffuse into hepatocytes; biliary excretion is mediated by P-gp. The SCH model is useful to investigate factors that may alter the route and/or extent of hepatic basolateral and canalicular efflux of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

99mTc-MEB:

99mTechnetium-mebrofenin

99mTc-MIBI:

99mTechnetium-sestamibi

Bcrp:

breast cancer resistance protein

BEI:

biliary excretion index

Clbiliary :

in vitro biliary clearance

DMEM:

Dulbecco’s modified Eagle’s medium

E217G:

estradiol-17-β-D-glucuronide

FBS:

fetal bovine serum

GF120918:

N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide

HBSS:

Hanks’ balanced salt solution

Mrp:

multidrug resistance-associated protein

NTCP:

sodium taurocholate cotransporter.

OAT:

organic anion transporter

OCT:

organic cation transporter

PAH:

para-aminohippuric acid

P-gp:

multidrug resistance protein P-glycoprotein

RNAi:

RNA interference

SCH:

sandwich-cultured hepatocytes

siBcrp:

RNAi short hairpin knockdown of rat Bcrp

siNT:

non-target siRNA

TEA:

tetraethylammonium

WT:

wild-type

REFERENCES

  1. Doo E, Krishnamurthy GT, Eklem MJ, Gilbert S, Brown PH. Quantification of hepatobiliary function as an integral part of imaging with technetium-99m-mebrofenin in health and disease. J Nucl Med. 1991;32:48–57.

    CAS  PubMed  Google Scholar 

  2. Krishnamurthy GT, Turner FE. Pharmacokinetics and clinical application of technetium 99m-labeled hepatobiliary agents. Semin Nucl Med. 1990;20:130–49.

    Article  CAS  PubMed  Google Scholar 

  3. Ghibellini G, Leslie EM, Pollack GM, Brouwer KLR. Use of tc-99m mebrofenin as a clinical probe to assess altered hepatobiliary transport: integration of in vitro, pharmacokinetic modeling, and simulation studies. Pharm Res. 2008;25:1851–60.

    Article  CAS  PubMed  Google Scholar 

  4. Bhargava KK, Joseph B, Ananthanarayanan M, et al. Adenosine triphosphate-binding cassette subfamily C member 2 is the major transporter of the hepatobiliary imaging agent (99m)Tc-mebrofenin. J Nucl Med. 2009;50:1140–6.

    Article  CAS  PubMed  Google Scholar 

  5. Pinos T, Constansa JM, Palacin A, Figueras C. A new diagnostic approach to the Dubin-Johnson syndrome. Am J Gastroenterol. 1990;85:91–3.

    CAS  PubMed  Google Scholar 

  6. Beller GA, Sinusas AJ. Experimental studies of the physiologic properties of technetium-99m isonitriles. Am J Cardiol. 1990;66:5E–8E.

    Article  CAS  PubMed  Google Scholar 

  7. Mobasseri S, Hendel RC. Cardiac imaging in women: use of radionuclide myocardial perfusion imaging and echocardiography for acute chest pain. Cardiol Rev. 2002;10:149–60.

    Article  PubMed  Google Scholar 

  8. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res. 1993;53:977–84.

    CAS  PubMed  Google Scholar 

  9. Luker GD, Fracasso PM, Dobkin J, Piwnica-Worms D. Modulation of the multidrug resistance P-glycoprotein: detection with technetium-99m-sestamibi in vivo. J Nucl Med. 1997;38:369–72.

    CAS  PubMed  Google Scholar 

  10. Wong M, Evans S, Rivory LP, et al. Hepatic technetium Tc 99m-labeled sestamibi elimination rate and ABCB1 (MDR1) genotype as indicators of ABCB1 (P-glycoprotein) activity in patients with cancer. Clin Pharmacol Ther. 2005;77:33–42.

    Article  CAS  PubMed  Google Scholar 

  11. Chen CC, Meadows B, Regis J, et al. Detection of in vivo P-glycoprotein inhibition by PSC 833 using Tc-99m sestamibi. Clin Cancer Res. 1997;3:545–52.

    CAS  PubMed  Google Scholar 

  12. Slapak CA, Dahlheimer J, Piwnica-Worms D. Reversal of multidrug resistance with LY335979: functional analysis of P-glycoprotein-mediated transport activity and its modulation in vivo. J Clin Pharmacol. 2001;Suppl:29–38.

    Google Scholar 

  13. Hendrikse NH, Franssen EJ, van der Graaf WT, et al. 99mTc-sestamibi is a substrate for P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer. 1998;77:353–8.

    CAS  PubMed  Google Scholar 

  14. Hendrikse NH, Kuipers F, Meijer C, et al. In vivo imaging of hepatobiliary transport function mediated by multidrug resistance associated protein and P-glycoprotein. Cancer Chemother Pharmacol. 2004;54:131–8.

    Article  CAS  PubMed  Google Scholar 

  15. Michael M, Thompson M, Hicks RJ, et al. Relationship of hepatic functional imaging to irinotecan pharmacokinetics and genetic parameters of drug elimination. J Clin Oncol. 2006;24:4228–35.

    Article  CAS  PubMed  Google Scholar 

  16. Wong M, Balleine RL, Blair EY, et al. Predictors of vinorelbine pharmacokinetics and pharmacodynamics in patients with cancer. J Clin Oncol. 2006;24:2448–55.

    Article  CAS  PubMed  Google Scholar 

  17. LeCluyse EL, Bullock PL, Parkinson A, Hochman JH. Cultured rat hepatocytes. Pharm Biotechnol. 1996;8:121–59.

    CAS  PubMed  Google Scholar 

  18. Leslie EM, Watkins PB, Kim RB, Brouwer KLR. Differential inhibition of rat and human Na+ -dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1)by bosentan: a mechanism for species differences in hepatotoxicity. J Pharmacol Exp Ther. 2007;321:1170–8.

    Article  CAS  PubMed  Google Scholar 

  19. Baur H, Kasperek S, Pfaff E. Criteria of viability of isolated liver cells. Hoppe Seylers Z Physiol Chem. 1975;356:827–38.

    CAS  PubMed  Google Scholar 

  20. Wolf KK, Brouwer KR, Pollack GM, Brouwer KLR. Effect of albumin on the biliary clearance of compounds in sandwich-cultured rat hepatocytes. Drug Metab Dispos. 2008;36:2086–92.

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, LeCluyse EL, Brouwer KR, et al. Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am J Physiol. 1999;277:G12–21.

    CAS  PubMed  Google Scholar 

  22. Seglen PO. Preparation of isolated rat liver cells. Meth Cell Biol. 1976;13:29–83.

    Article  CAS  Google Scholar 

  23. Yue W, Abe K, Brouwer KLR. Knocking Down Breast Cancer Resistance Protein (Bcrp) by Adenoviral Vector-Mediated RNA Interference (RNAi) in Sandwich-Cultured Rat Hepatocytes: A novel tool to assess the contribution of bcrp to drug biliary excretion. Mol Pharm. 2009;6:134–43.

    Article  CAS  PubMed  Google Scholar 

  24. Oude Elferink RP, Ottenhoff R, Liefting WG, Schoemaker B, Groen AK, Jansen PL. ATP-dependent efflux of GSSG and GS-conjugate from isolated rat hepatocytes. Am J Physiol. 1990;258:G699–706.

    CAS  PubMed  Google Scholar 

  25. Studenberg SD, Brouwer KLR. Effect of phenobarbital and p-hydroxyphenobarbital glucuronide on acetaminophen metabolites in isolated rat hepatocytes: use of a kinetic model to examine the rates of formation and egress. J Pharmacokinet Biopharm. 1993;21:175–94.

    Article  CAS  PubMed  Google Scholar 

  26. Tarao K, Olinger EJ, Ostrow JD, Balistreri WF. Impaired bile acid efflux from hepatocytes isolated from the liver of rats with cholestasis. Am J Physiol. 1982;243:G253–8.

    CAS  PubMed  Google Scholar 

  27. Groothuis GM, Hulstaert CE, Kalicharan D, Hardonk MJ. Plasma membrane specialization and intracellular polarity of freshly isolated rat hepatocytes. Eur J Cell Biol. 1981;26:43–51.

    CAS  PubMed  Google Scholar 

  28. Borlak J, Klutcka T. Expression of basolateral and canalicular transporters in rat liver and cultures of primary hepatocytes. Xenobiotica. 2004;34:935–47.

    Article  CAS  PubMed  Google Scholar 

  29. Luttringer O, Theil FP, Lave T, Wernli-Kuratli K, Guentert TW, de Saizieu A. Influence of isolation procedure, extracellular matrix and dexamethasone on the regulation of membrane transporters gene expression in rat hepatocytes. Biochem Pharmacol. 2002;64:1637–50.

    Article  CAS  PubMed  Google Scholar 

  30. Dunn JC, Tompkins RG, Yarmush ML. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J Cell Biol. 1992;116:1043–53.

    Article  CAS  PubMed  Google Scholar 

  31. Dunn JC, Yarmush ML, Koebe HG, Tompkins RG. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 1989;3:174–7.

    CAS  PubMed  Google Scholar 

  32. Dunn JC, Tompkins RG, Yarmush ML. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog. 1991;7:237–45.

    Article  CAS  PubMed  Google Scholar 

  33. LeCluyse EL, Audus KL, Hochman JH. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol. 1994;266:C1764–74.

    CAS  PubMed  Google Scholar 

  34. Liu X, Brouwer KLR, Gan LS, et al. Partial maintenance of taurocholate uptake by adult rat hepatocytes cultured in a collagen sandwich configuration. Pharm Res. 1998;15:1533–9.

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, LeCluyse EL, Brouwer KR, Lightfoot RM, Lee JI, Brouwer KLR. Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther. 1999;289:1592–9.

    CAS  PubMed  Google Scholar 

  36. Brock WJ, Vore M. Characterization of uptake of steroid glucuronides into isolated male and female rat hepatocytes. J Pharmacol Exp Ther. 1984;229:175–81.

    CAS  PubMed  Google Scholar 

  37. Shitara Y, Li AP, Kato Y, et al. Function of uptake transporters for taurocholate and estradiol 17beta-D-glucuronide in cryopreserved human hepatocytes. Drug Metab Pharmacokinet. 2003;18:33–41.

    Article  CAS  PubMed  Google Scholar 

  38. Busch AE, Quester S, Ulzheimer JC, et al. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem. 1996;271:32599–604.

    Article  CAS  PubMed  Google Scholar 

  39. Chen R, Nelson JA. Role of organic cation transporters in the renal secretion of nucleosides. Biochem Pharmacol. 2000;60:215–9.

    Article  CAS  PubMed  Google Scholar 

  40. Grundemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994;372:549–52.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi Y, Ohshiro N, Sakai R, Ohbayashi M, Kohyama N, Yamamoto T. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol. 2005;57:573–8.

    Article  CAS  PubMed  Google Scholar 

  42. Sekine T, Cha SH, Tsuda M, et al. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. FEBS Lett. 1998;429:179–82.

    Article  CAS  PubMed  Google Scholar 

  43. Cattori V, van Montfoort JE, Stieger B, et al. Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3. Pflugers Arch. 2001;443:188–95.

    Article  CAS  PubMed  Google Scholar 

  44. Wolff NA, Thies K, Kuhnke N, et al. Protein kinase C activation downregulates human organic anion transporter 1-mediated transport through carrier internalization. J Am Soc Nephrol. 2003;14:1959–68.

    Article  CAS  PubMed  Google Scholar 

  45. Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium(I) in cultured mouse fibroblasts. J Nucl Med. 1990;31:1646–53.

    CAS  PubMed  Google Scholar 

  46. Li N, Bi YA, Duignan DB, Lai Y. Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes. Mol Pharm. 2009;6:1180–9.

    Article  CAS  PubMed  Google Scholar 

  47. Letschert K, Komatsu M, Hummel-Eisenbeiss J, Keppler D. Vectorial transport of the peptide CCK-8 by double-transfected MDCKII cells stably expressing the organic anion transporter OATP1B3 (OATP8) and the export pump ABCC2. J Pharmacol Exp Ther. 2005;313:549–56.

    Article  CAS  PubMed  Google Scholar 

  48. Annaert PP, Turncliff RZ, Booth CL, Thakker DR, Brouwer KLR. P-glycoprotein-mediated in vitro biliary excretion in sandwich-cultured rat hepatocytes. Drug Metab Dispos. 2001;29:1277–83.

    CAS  PubMed  Google Scholar 

  49. de Bruin M, Miyake K, Litman T, Robey R, Bates SE. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett. 1999;146:117–26.

    Article  Google Scholar 

  50. Zamek-Gliszczynski MJ, Hoffmaster KA, Humphreys JE, Tian X, Nezasa K, Brouwer KLR. Differential involvement of Mrp2 (Abcc2) and Bcrp (Abcg2) in biliary excretion of 4-methylumbelliferyl glucuronide and sulfate in the rat. J Pharmacol Exp Ther. 2006;319:459–67.

    Article  CAS  PubMed  Google Scholar 

  51. Ballinger JR, Hua HA, Berry BW, Firby P, Boxen I. 99Tcm-sestamibi as an agent for imaging P-glycoprotein-mediated multi-drug resistance: in vitro and in vivo studies in a rat breast tumour cell line and its doxorubicin-resistant variant. Nucl Med Commun. 1995;16:253–7.

    Article  CAS  PubMed  Google Scholar 

  52. Rao VV, Chiu ML, Kronauge JF, Piwnica-Worms D. Expression of recombinant human multidrug resistance P-glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi. J Nucl Med. 1994;35:510–5.

    CAS  PubMed  Google Scholar 

  53. Ghibellini G, Johnson BM, Kowalsky RJ, Heizer WD, Brouwer KLR. A novel method for the determination of biliary clearance in humans. AAPS J. 2004;6:e33.

    Article  PubMed  Google Scholar 

  54. Nunn AD, Loberg MD, Conley RA. A structure-distribution-relationship approach leading to the development of Tc-99m mebrofenin: an improved cholescintigraphic agent. J Nucl Med. 1983;24:423–30.

    CAS  PubMed  Google Scholar 

  55. Ghibellini G, Vasist LS, Leslie EM, et al. In vitro-in vivo correlation of hepatobiliary drug clearance in humans. Clin Pharmacol Ther. 2007;81:406–13.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by a grant from the National Institutes of Health (R01GM41935). Brandon Swift was supported by an Eli Lilly and Company Foundation predoctoral fellowship. The authors would like to thank Arlene S. Bridges, Ph.D., for her analytical support; Yiwei Rong for her technical expertise in the isolation of rat hepatocytes; and CellzDirect, Life Technologies, for kindly providing freshly isolated suspended and sandwich-cultured human hepatocytes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim L. R. Brouwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swift, B., Yue, W. & Brouwer, K.L.R. Evaluation of 99mTechnetium-Mebrofenin and 99mTechnetium-Sestamibi as Specific Probes for Hepatic Transport Protein Function in Rat and Human Hepatocytes. Pharm Res 27, 1987–1998 (2010). https://doi.org/10.1007/s11095-010-0203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0203-x

KEY WORDS

Navigation