Skip to main content
Log in

Altered GABAA Receptor Expression and Seizure Threshold Following Acute Ethanol Challenge in Mice Lacking the RIIβ Subunit of PKA

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ethanol causes pathological changes in GABAA receptor trafficking and function. These changes are mediated in part by ethanol activation of protein kinase A (PKA). The current study investigated the expression of the GABAA α1 and α4 subunits and the kinase anchoring protein AKAP150, as well as bicuculline-induced seizure threshold, at baseline and following acute injection of ethanol (3.5 g/kg IP) in a mouse line lacking the regulatory RIIβ subunit of PKA. Whole cerebral cortices were harvested at baseline, 1 h, or 46 h following injection of ethanol or saline and subjected to fractionation and western blot analysis. Knockout (RIIβ−/−) mice had similar baseline levels of PKA RIIα and GABAA α1 and α4 subunits compared to wild type (RIIβ+/+) littermates, but had deficits in AKAP150. GABAA α1 subunit levels were decreased in the P2 fraction of RIIβ−/−, but not RIIβ+/+, mice following 1 h ethanol, an effect that was driven by decreased α1 expression in the synaptic fraction. GABAA α4 subunits in the P2 fraction were not affected by 1 h ethanol; however, synaptic α4 subunit expression was increased in RIIβ+/+, but not RIIβ−/− mice, while extrasynaptic α4 and δ subunit expression were decreased in RIIβ−/−, but not RIIβ+/+ mice. Finally, RIIβ knockout was protective against bicuculline-induced seizure susceptibility. Overall, the results suggest that PKA has differential roles in regulating GABAA receptor subunits. PKA may protect against ethanol-induced deficits in synaptic α1 and extrasynaptic α4 receptors, but may facilitate the increase of synaptic α4 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL (2009) The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology 205:529–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Cagetti E, Liang J, Spigelman I, Olsen RW (2003) Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function, and decreases behavioral responses to positive allosteric modulators of GABAA receptors. Mol Pharmacol 63:53–64

    Article  CAS  PubMed  Google Scholar 

  3. Liang J, Cagetti E, Olsen RW, Spigelman I (2004) Altered pharmacology of synaptic and extrasynaptic GABAA receptors on CA1 hippocampal neurons is consistent with subunit changes in a model of alcohol withdrawal and dependence. J Pharmacol Exp Ther 310:1234–1245

    Article  CAS  PubMed  Google Scholar 

  4. Kralic JE, Korpi ER, O’Buckley TK, Homanics GE, Morrow AL (2002) Molecular and pharmacological characterization of GABAA receptor α1 subunit knockout mice. J Pharmacol Exp Ther 302:1037–1045

    Article  CAS  PubMed  Google Scholar 

  5. Kralic JE, O’Buckley TK, Khisti RT, Hodge CW, Homanics GE, Morrow AL (2002) GABAA receptor α1 subunit deletion alters receptor subtype assembly, pharmacological and behavioral responses to benzodiazepines and zolpidem. Neuropharmacology 43:685–694

    Article  CAS  PubMed  Google Scholar 

  6. Liang J, Suryanarayanan A, Abriam A, Snyder B, Olsen RW, Spigelman I (2007) Mechanisms of reversible GABAA receptor plasticity after ethanol intoxication. J Neurosci 27:12367–12377

    Article  CAS  PubMed  Google Scholar 

  7. Olsen RW, Sieghart W (2009) GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci 6:215–229

    Article  CAS  PubMed  Google Scholar 

  9. Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW (2009) Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci 29:12757–12763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Herman MA, Contet C, Justice NJ, Vale W, Roberto M (2013) Novel subunit-specific tonic GABA currents and differential effects of ethanol in the central amygdala of CRF receptor-1 reporter mice. J Neurosci 33:3284–3298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Glykys J, Peng Z, Chandra D, Homanics GE, Houser CR, Mody I (2007) A new naturally occurring GABAA receptor subunit partnership with high sensitivity to ethanol. Nat Neurosci 10:40–48

    Article  CAS  PubMed  Google Scholar 

  12. Jia F, Pignataro L, Harrison NL (2007) GABAA receptors in the thalamus: alpha4 subunit expression and alcohol sensitivity. Alcohol 41:177–185

    Article  CAS  PubMed  Google Scholar 

  13. Werner DF, Kumar S, Criswell HE, Suryanarayanan A, Fetzer JA, Comerford CE, Morrow AL (2011) PKCgamma is required for ethanol-induced increases in GABA(A) receptor alpha4 subunit expression in cultured cerebral cortical neurons. J Neurochem 116:554–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Liang J, Suryanarayanan A, Chandra D, Homanics GE, Olsen RW, Spigelman I (2008) Functional consequences of GABAA receptor α4 subunit deletion on synaptic and extrasynaptic currents in mouse dentate granule cells. Alcohol Clin Exp Res 32:19–26

    Article  CAS  PubMed  Google Scholar 

  15. Pignataro L, Varodayan FP, Tannenholz LE, Harrison NL (2009) The regulation of neuronal gene expression by alcohol. Pharmacol Ther 124:324–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kumar S, Ren Q, Beckley JH, O’Buckley TK, Gigante ED, Santerre JL, Werner DF, Morrow AL (2012) Ethanol activation of protein kinase A regulates GABA(A) receptor subunit expression in the cerebral cortex and contributes to ethanol-induced hypnosis. Front Neurosci 6:44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Carlson SL, Kumar S, Werner DF, Comerford CE, Morrow AL (2013) Ethanol activation of PKA regulates GABAA alpha1 receptor function and trafficking in cultured cerebral cortical neurons. J Pharmacol Exp Ther 345:317–325

    Google Scholar 

  18. Kumar S, Suryanarayanan A, Boyd KN, Comerford CE, Lai MA, Ren Q, Morrow AL (2010) Ethanol reduces GABAA alpha1 subunit receptor surface expression by a protein kinase Cgamma-dependent mechanism in cultured cerebral cortical neurons. Mol Pharmacol 77:793–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Dell’Acqua ML, Smith KE, Gorski JA, Horne EA, Gibson ES, Gomez LL (2006) Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur J Cell Biol 85:627–633

    Article  PubMed  Google Scholar 

  20. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    Article  CAS  PubMed  Google Scholar 

  21. Thiele TE, Willis B, Stadler J, Reynolds JG, Bernstein IL, McKnight GS (2000) High ethanol consumption and low sensitivity to ethanol-induced sedation in protein kinase A-mutant mice. J Neurosci 20: RC75

  22. Fee JR, Sparta DR, Knapp DJ, Breese GR, Picker MJ, Thiele TE (2004) Predictors of high ethanol consumption in RIIbeta knock-out mice: assessment of anxiety and ethanol-induced sedation. Alcohol Clin Exp Res 28:1459–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ferraro FM 3rd, Sparta DR, Knapp DJ, Breese GR, Thiele TE (2006) Increased consumption but not operant self-administration of ethanol in mice lacking the RIIbeta subunit of protein kinase A. Alcohol Clin Exp Res 30:825–835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Goebel-Goody SM, Davies KD, Alvestad Linger RM, Freund RK, Browning MD (2009) Phospho-regulation of synaptic and extrasynaptic N-methyl-d-aspartate receptors in adult hippocampal slices. Neuroscience 158:1446–1459

    Article  CAS  PubMed  Google Scholar 

  25. Livy DJ, Parnell SE, West JR (2003) Blood ethanol concentration profiles: a comparison between rats and mice. Alcohol 29:165–171

    Article  CAS  PubMed  Google Scholar 

  26. Liang J, Zhang N, Cagetti E, Houser CR, Olsen RW, Spigelman I (2006) Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal GABAA receptors. J Neurosci 26:1749–1758

    Article  CAS  PubMed  Google Scholar 

  27. Amieux PS, McKnight GS (2002) The essential role of RI alpha in the maintenance of regulated PKA activity. Ann N Y Acad Sci 968:75–95

    Article  CAS  PubMed  Google Scholar 

  28. Brandon EP, Logue SF, Adams MR, Qi M, Sullivan SP, Matsumoto AM, Dorsa DM, Wehner JM, McKnight GS, Idzerda RL (1998) Defective motor behavior and neural gene expression in RIIbeta-protein kinase A mutant mice. J Neurosci 18:3639–3649

    CAS  PubMed  Google Scholar 

  29. Brandon NJ, Jovanovic JN, Colledge M, Kittler JT, Brandon JM, Scott JD, Moss SJ (2003) A-kinase anchoring protein 79/150 facilitates the phosphorylation of GABA(A) receptors by cAMP-dependent protein kinase via selective interaction with receptor beta subunits. Mol Cell Neurosci 22:87–97

    Article  CAS  PubMed  Google Scholar 

  30. Skeberdis VA, Chevaleyre V, Lau CG, Goldberg JH, Pettit DL, Suadicani SO, Lin Y, Bennett MV, Yuste R, Castillo PE, Zukin RS (2006) Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci 9:501–510

    Article  CAS  PubMed  Google Scholar 

  31. Man HY, Sekine-Aizawa Y, Huganir RL (2007) Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc Natl Acad Sci USA 104:3579–3584

    Article  PubMed Central  PubMed  Google Scholar 

  32. Yang Y, Takeuchi K, Rodenas-Ruano A, Takayasu Y, Bennett MV, Zukin RS (2009) Developmental switch in requirement for PKA RIIbeta in NMDA-receptor-dependent synaptic plasticity at Schaffer collateral to CA1 pyramidal cell synapses. Neuropharmacology 56:56–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Devaud LL, Purdy RH, Morrow AL (1995) The neurosteroid, 3-alpha-hydroxy-5-alpha-pregnan-20-one, protects against bicuculline-induced seizures during ethanol withdrawal in rats. Alcohol Clin Exp Res 19:350–355

    Article  CAS  PubMed  Google Scholar 

  34. Vergnano AM, Schlichter R, Poisbeau P (2007) PKC activation sets an upper limit to the functional plasticity of GABAergic transmission induced by endogenous neurosteroids. Eur J Neurosci 26:1173–1182

    Article  PubMed  Google Scholar 

  35. Harney SC, Frenguelli BG, Lambert JJ (2003) Phosphorylation influences neurosteroid modulation of synaptic GABAA receptors in rat CA1 and dentate gyrus neurones. Neuropharmacology 45:873–883

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank J. Peyton Bohnsack for helpful suggestions. This work was supported by National Institute of Health grants AA011605, AA013573, AA015148, AA007573 and the Bowles Center for Alcohol Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Leslie Morrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, S.L., O’Buckley, T.K., Thomas, R. et al. Altered GABAA Receptor Expression and Seizure Threshold Following Acute Ethanol Challenge in Mice Lacking the RIIβ Subunit of PKA. Neurochem Res 39, 1079–1087 (2014). https://doi.org/10.1007/s11064-013-1167-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1167-0

Keywords

Navigation