Skip to main content
Log in

Estrogen or Estrogen Receptor Agonist Inhibits Lipopolysaccharide Induced Microglial Activation and Death

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 18 March 2011

Abstract

Inflammation is an important pathogenic mechanism in many neurodegenerative disorders. Activated microglia play a pivotal role in releasing pro-inflammatory factors including interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) for inducing inflammation. While microglia mediated inflammation is essential in maintaining CNS homeostasis, chronic inflammation results in activation of proteases for cell death. Here, we examined the effect of PPT (estrogen receptor α agonist), DPN (estrogen receptor β agonist), and estrogen on rat primary microglia following exposure to lipopolysaccharide (LPS). Exposure of microglia to LPS (200 ng/ml) for 24 h induced cell death. After LPS toxicity for 15 min, microglia were treated with 25 nM PPT, 25 nM DPN, or 100 nM estrogen that prevented cell death by attenuating the release of IL-1α, IL-1β, TNF-α, and COX-2. Treatment of cells with 100 nM fulvestrant (estrogen receptor antagonist) prior to addition of PPT, DPN, or estrogen significantly decreased their ability to prevent cell death, indicating involvement of estrogen receptor (ER) in providing PPT, DPN, or estrogen mediated cytoprotection. Reverse transcriptase polymerase chain reaction (RT–PCR) analyses showed alterations in mRNA expression of Bax, Bcl-2, calpain, and calpastatin during apoptosis. We also examined mRNA expression of ERβ and ERα following exposure of microglia to LPS and subsequent treatment with PPT, DPN, or estrogen. We found that estrogen or estrogen receptor agonists upregulated expression of ERs. Overall, results indicate that estrogen receptor agonist or estrogen uses a receptor mediated pathway to protect microglia from LPS toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Calabrese V, Scapagnini G, Ravagna A et al (2002) Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and S-nitrosothiols and with changes in glutathione levels. J Neurosci Res 70:580–587

    Article  PubMed  CAS  Google Scholar 

  2. McGeer PL, McGeer EG (2007) NSAIDs and Alzheimer disease: epidemiological, animal model, and clinical studies. Neurobiol Aging 28:639–647

    Article  PubMed  CAS  Google Scholar 

  3. Zandi PP, Anthony JC, Hayden KM et al (2002) Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology 59:880–886

    PubMed  CAS  Google Scholar 

  4. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  5. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  6. Dheen ST, Kaur C, Ling EA (2007) Microglia activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  PubMed  CAS  Google Scholar 

  7. McGeer PL, Kawamata T, Walker DG (1993) Microglia in degenerative neurological disease. Glia 7:84–92

    Article  PubMed  CAS  Google Scholar 

  8. Aktas O, Smorodchenko A, Brocke S (2005) Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron 46:421–432

    Article  PubMed  CAS  Google Scholar 

  9. Purisai MG, McCormack AL, Cumine S (2007) Microglia activation as a priming event lead to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 25:392–400

    Article  PubMed  CAS  Google Scholar 

  10. Dickson DW, Lee SC, Mattiace SH et al (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7:75–83

    Article  PubMed  CAS  Google Scholar 

  11. Henkel JS, Engelhardt JI, Siklos L (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235

    Article  PubMed  CAS  Google Scholar 

  12. Garay L, Gonzalez Deniselle MC, Gierman L et al (2008) Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neuroimmunomodulation 15:76–83

    PubMed  CAS  Google Scholar 

  13. Jia J, Guan D, Zhu W et al (2009) Estrogen inhibits Fas-mediated apoptosis in experimental stroke. Exp Neurol 215:48–52

    Article  PubMed  CAS  Google Scholar 

  14. Morissette M, Al Sweidi S, Callier S et al (2008) Estrogen and SERM neuroprotection in animal models of Parkinson’s disease. Mol Cell Endocrinol 290:60–69

    Article  PubMed  CAS  Google Scholar 

  15. Bayir H, Marion DW, Puccio AM et al (2004) Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients. J Neurotrauma 21:1–8

    Article  PubMed  Google Scholar 

  16. Bode FJ, Stephan M, Suhling H et al (2008) Sex differences in a transgenic rat model of Huntington’s disease: decreased 17 beta-estradiol levels correlate with reduced numbers of DARPP32 + neurons in males. Hum Mol Gen 17:2595–2609

    Article  PubMed  CAS  Google Scholar 

  17. Frutiger K, Lukas TJ, Gorrie G et al (2008) Gender differences in levels of Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9:184–187

    Article  PubMed  CAS  Google Scholar 

  18. Kupina NC, Detloff MR, Bobrowski WF et al (2003) Cytoskeletal protein degradation and neurodgeneration evolves differently in males and females following experimental head injury. Exp Neurol 180:55–73

    Article  PubMed  CAS  Google Scholar 

  19. Dimayuga FO, Reed JL, Carnero GA et al (2005) Estrogen and brain inflammation: effects on microglial expression of MHC, costimulatory molecules and cytokines. J Neuroimmunol 161:123–136

    Article  PubMed  CAS  Google Scholar 

  20. Moosmann B, Behl C (1999) The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc Natl Acad Sci USA 96:8867–8872

    Article  PubMed  CAS  Google Scholar 

  21. Tripanichkul W, Sripanichkulchai K, Finkelstein DI (2006) Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine intoxication. Brain Res 1084:28–37

    Article  PubMed  CAS  Google Scholar 

  22. Vegeto E, Bonincontro C, Pollio G (2001) Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J Neurosci 21:1809–1818

    PubMed  CAS  Google Scholar 

  23. Bruce-Keller AJ, Keeling JL, Keller JN (2000) Antiinflammatory effects of estrogen on microglial activation. Endocrinology 141:3646–3656

    Article  PubMed  CAS  Google Scholar 

  24. Drew PD, Chavis JA (2000) Female sex steroids: effects upon microglial cell activation. J Neuroimmunol 111:77–85

    Article  PubMed  CAS  Google Scholar 

  25. Zemlyak I, Brooke S, Sapolsky R (2005) Estrogenic protection against gp120 neurotoxicity: role of microglia. Brain Res 1046:130–136

    Article  PubMed  CAS  Google Scholar 

  26. Baker AE, Brautigam VM, Watters JJ (2004) Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor beta. Endocrinology 145:5021–5032

    Article  PubMed  CAS  Google Scholar 

  27. Liu X, Fan XL, Zhao Y et al (2005) Estrogen provides neuroprotection against activated microglia-induced dopaminergic neuronal injury through both estrogen receptor-alpha and estrogen receptor-beta in microglia. J Neurosci Research 81:653–665

    Article  CAS  Google Scholar 

  28. Tapia-Gonzalez S, Carrero P, Pernia O et al (2008) Selective estrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs. J Endocrinol 198:219–230

    Article  PubMed  CAS  Google Scholar 

  29. Das A, Sribnick EA, Wingrave JM et al (2005) Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: calpain inhibition provides functional neuroprotection. J Neurosci Res 81:551–562

    Article  PubMed  CAS  Google Scholar 

  30. Das A, Banik NL, Ray SK (2009) Molecular mechanisms of the combination of retinoid and interferon-gamma for inducing differentiation and increasing apoptosis in human glioblastoma T98G and U87MG cells. Neurochem Res 34:87–101

    Article  PubMed  CAS  Google Scholar 

  31. Davidge ST, Baker PN, Laughlin MK et al (1995) Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circ Res 77:274–283

    PubMed  CAS  Google Scholar 

  32. Ray SK, Neuberger TJ, Deadwyler G et al (2002) Calpain and calpastatin expression in primary oligodendrocyte culture: preferential localization of membrane calpain in cell processes. J Neurosci Res 70:561–569

    Article  PubMed  CAS  Google Scholar 

  33. Pan XD, Chen XC, Zhu YG et al (2008) Neuroprotective role of tripchloride on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochem Pharmacol 76:362–372

    Article  PubMed  CAS  Google Scholar 

  34. Sribnick EA, Ray SK, Banik NL (2004) Estrogen as a multi-active neuroprotective agent in traumatic injuries. Neurochem Res 29:2007–2014

    Article  PubMed  CAS  Google Scholar 

  35. Sawada H, Shimohama S (2000) Neuroprotective effects of estradiol in mesencephalic dopaminergic neurons. Neurosci Biobehav Rev 24:143–147

    Article  PubMed  CAS  Google Scholar 

  36. Tiwari-Woodruff S, Morales LB, Lee R et al (2007) Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER) alpha and ERbeta ligand treatment. Proc Natl Acad Sci USA 104:14813–14818

    Article  PubMed  Google Scholar 

  37. Crawford DK, Mangiardi M, Song B et al (2010) Oestrogen receptor beta ligand: a novel treatment to enhance endogenous functional remyelination. Brain 133:2999–3016

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This article is dedicated to Dr. Robert K. Yu who has contributed invaluable understanding of the mechanisms underlying neurodegenerative disorders. Dr. Yu’s work has formed an essential foundation upon which future research and clinical pursuits may build.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naren L. Banik.

Additional information

Special Issue: In Honor of Dr. Robert Yu.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-011-0429-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J.A., Das, A., Butler, J.T. et al. Estrogen or Estrogen Receptor Agonist Inhibits Lipopolysaccharide Induced Microglial Activation and Death. Neurochem Res 36, 1587–1593 (2011). https://doi.org/10.1007/s11064-010-0336-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0336-7

Keywords

Navigation