Skip to main content

Advertisement

Log in

Scaffold mining of kinase hinge binders in crystal structure database

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Protein kinases are the second most prominent group of drug targets, after G-protein-coupled receptors. Despite their distinct inhibition mechanisms, the majority of kinase inhibitors engage the conserved hydrogen bond interactions with the backbone of hinge residues. We mined Pfizer internal crystal structure database (CSDb) comprising of several thousand of public as well as internal X-ray binary complexes to compile an inclusive list of hinge binding scaffolds. The minimum ring scaffolds with directly attached hetero-atoms and functional groups were extracted from the full compounds by applying a rule-based filtering procedure employing a comprehensive annotation of ATP-binding site of the human kinase complements. The results indicated large number of kinase inhibitors of diverse chemical structures are derived from a relatively small number of common scaffolds, which serve as the critical recognition elements for protein kinase interaction. Out of the nearly 4,000 kinase-inhibitor complexes in the CSDb we identified approximately 600 unique scaffolds. Hinge scaffolds are overwhelmingly flat with very little sp3 characteristics, and are less lipophilic than their corresponding parent compounds. Examples of the most common as well as the uncommon hinge scaffolds are presented. Although the most common scaffolds are found in complex with multiple kinase targets, a large number of them are uniquely bound to a specific kinase, suggesting certain scaffolds could be more promiscuous than the others. The compiled collection of hinge scaffolds along with their three-dimensional binding coordinates could serve as basis set for hinge hopping, a practice frequently employed to generate novel invention as well as to optimize existing leads in medicinal chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

KD:

Kinase domain

CSDb:

Crystal structure database

SAR:

Structure–activity relationship

PSA:

Polar surface area

3D:

Three-dimension

References

  1. Cohen P (2002) Nat Rev Drug Discov 1(4):309

    Article  CAS  Google Scholar 

  2. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) Science 298(5600):1912

    Article  CAS  Google Scholar 

  3. Cohen P, Alessi DR (2013) ACS Chem Biol 8(1):96

    Article  CAS  Google Scholar 

  4. Dar AC, Shokat KM (2011) Annu Rev Biochem 80:769

    Article  CAS  Google Scholar 

  5. Noble ME, Endicott JA, Johnson LN (2004) Science 303(5665):1800

    Article  CAS  Google Scholar 

  6. Johnson LN, Noble ME, Owen DJ (1996) Cell 85(2):149

    Article  CAS  Google Scholar 

  7. Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T, Graham AG, Grob PM, Hickey ER, Moss N, Pav S, Regan J (2002) Nat Struct Biol 9(4):268

    Article  CAS  Google Scholar 

  8. Iwata H, Imamura S, Hori A, Hixon MS, Kimura H, Miki H (2011) Biochemistry 50(5):738

    Article  CAS  Google Scholar 

  9. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R, Cancer Genome P (2004) Cell 116(6):855

    Google Scholar 

  10. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, Clarkson B, Kuriyan J (2002) Cancer Res 62(15):4236

    CAS  Google Scholar 

  11. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, Ellis B, Pennisi C, Horne E, Lackey K, Alligood KJ, Rusnak DW, Gilmer TM, Shewchuk L (2004) Cancer Res 64(18):6652

    Article  CAS  Google Scholar 

  12. Jacobs MD, Caron PR, Hare BJ (2008) Proteins 70(4):1451

    Article  CAS  Google Scholar 

  13. Brooijmans N, Chang YW, Mobilio D, Denny RA, Humblet C (2010) Protein Sci 19(4):763

    Google Scholar 

  14. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J (2006) PLoS Biol 4(5):e144

    Article  Google Scholar 

  15. Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G, Kuriyan J (2006) Mol Cell 21(6):787

    Article  CAS  Google Scholar 

  16. Dar AC, Lopez MS, Shokat KM (2008) Chem Biol 15(10):1015

    Article  CAS  Google Scholar 

  17. Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J (2007) Structure 15(3):299

    Article  CAS  Google Scholar 

  18. Schubert C, Schalk-Hihi C, Struble GT, Ma HC, Petrounia IP, Brandt B, Deckman IC, Patch RJ, Player MR, Spurlino JC, Springer BA (2007) J Biol Chem 282(6):4094

    Article  CAS  Google Scholar 

  19. Mao C, Zhou M, Uckun FM (2001) J Biol Chem 276(44):41435

    Article  CAS  Google Scholar 

  20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235

    Article  CAS  Google Scholar 

  21. Graczyk PP (2007) J Med Chem 50(23):5773

    Article  CAS  Google Scholar 

  22. Palm K, Stenberg P, Luthman K, Artursson P (1997) Pharm Res 14(5):568

    Article  CAS  Google Scholar 

  23. Ertl P, Rohda B, Selzer P (2000) J Med Chem 43:3714

    Article  CAS  Google Scholar 

  24. Lipinski CA (2000) J Pharmacol Toxicol Methods 44(1):235

    Article  CAS  Google Scholar 

  25. Lovering F, Bikker J, Humblet C (2009) J Med Chem 52(21):6752

    Article  CAS  Google Scholar 

  26. Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor PM, Piwnica-Worms H (2000) J Biol Chem 275(8):5600

    Article  CAS  Google Scholar 

  27. Engel GL, Farid NA, Faul MM, Richardson LA, Winneroski LL (2000) Int J Pharm 198(2):239

    Article  CAS  Google Scholar 

  28. Kremer JM, Bloom BJ, Breedveld FC, Coombs JH, Fletcher MP, Gruben D, Krishnaswami S, Burgos-Vargas R, Wilkinson B, Zerbini CA, Zwillich SH (2009) Arthritis Rheum 60(7):1895

    Article  CAS  Google Scholar 

  29. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, Buggy JJ (2010) Proc Natl Acad Sci USA 107(29):13075

    Article  CAS  Google Scholar 

  30. Simard JR, Getlik M, Grutter C, Pawar V, Wulfert S, Rabiller M, Rauh D (2009) J Am Chem Soc 131(37):13286

    Article  CAS  Google Scholar 

  31. Perry JJ, Harris RM, Moiani D, Olson AJ, Tainer JA (2009) J Mol Biol 391(1):1

    Article  CAS  Google Scholar 

  32. Namboodiri HV, Bukhtiyarova M, Ramcharan J, Karpusas M, Lee Y, Springman EB (2010) Biochemistry 49(17):3611

    Article  CAS  Google Scholar 

  33. Hansen JD, Grina J, Newhouse B, Welch M, Topalov G, Littman N, Callejo M, Gloor S, Martinson M, Laird E, Brandhuber BJ, Vigers G, Morales T, Woessner R, Randolph N, Lyssikatos J, Olivero A (2008) Bioorg Med Chem Lett 18(16):4692

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jacquelyn Mcleod-Klug for extracting kinase selectivity data and Gini coefficient, Kieth Burdick from Accelrys for technical support. We also thank the reviewers for their insightful suggestions. This study was sponsored by Pfizer Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2013_9700_MOESM1_ESM.doc

Compilation of functional groups that were preserved as part of the hinge interacting ring systems, bar charts of number of crystal structures by kinase group and kinase family in CSDb, distribution of crystal structures on kinome dendrogram, hinge scaffolds of Fsp3 > 0.3, and hinge scaffolds along with their canonical smiles strings, number of binary complexes in the CSDb, number as well as names of different kinase targets. This material is available free of charge via the Internet at http://www.sciencedirect.com/. SD file of the unique hinge binding scaffolds are available upon request. (DOC 1,748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, L., Rai, B. & Lunney, E.A. Scaffold mining of kinase hinge binders in crystal structure database. J Comput Aided Mol Des 28, 13–23 (2014). https://doi.org/10.1007/s10822-013-9700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9700-4

Keywords

Navigation