Skip to main content
Log in

Soluble guanylate cyclase: a potential therapeutic target for heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The number of annual hospitalizations for heart failure (HF) and the mortality rates among patients hospitalized for HF remains unacceptably high. The search continues for safe and effective agents that improve outcomes when added to standard therapy. The nitric oxide (NO)—soluble guanylate cyclase (sGC)—cyclic guanosine monophosphate (cGMP) pathway serves an important physiologic role in both vascular and non-vascular tissues, including regulation of myocardial and renal function, and is disrupted in the setting of HF, leading to decreased protection against myocardial injury, ventricular remodeling, and the cardio-renal syndrome. The impaired NO–sGC–cGMP pathway signaling in HF is secondary to reduced NO bioavailability and an alteration in the redox state of sGC, making it unresponsive to NO. Accordingly, increasing directly the activity of sGC is an attractive pharmacologic strategy. With the development of two novel classes of drugs, sGC stimulators and sGC activators, the hypothesis that restoration of NO–sGC–cGMP signaling is beneficial in HF patients can now be tested. Characterization of these agents in pre-clinical and clinical studies has begun with investigations suggesting both hemodynamic effects and organ-protective properties independent of hemodynamic changes. The latter could prove valuable in long-term low-dose therapy in HF patients. This review will explain the role of the NO–sGC–cGMP pathway in HF pathophysiology and outcomes, data obtained with sGC stimulators and sGC activators in pre-clinical and clinical studies, and a plan for the further clinical development to study these agents as HF therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADMA:

Asymmetric dimethylarginine

AHF:

Acute heart failure

BP:

Blood pressure

CO:

Cardiac output

cGMP:

Cyclic guanosine monophosphate

eNOS:

Endothelial nitric oxide synthase

HF:

Heart failure

NO:

Nitric oxide

PCWP:

Pulmonary capillary wedge pressure

sGC:

Soluble guanylate cyclase

References

  1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215. doi:10.1161/CIRCULATIONAHA.109.192667

    Article  PubMed  Google Scholar 

  2. Gheorghiade M, Abraham WT, Albert NM, Greenberg BH, O’Connor CM, She L, Stough WG, Yancy CW, Young JB, Fonarow GC (2006) Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. JAMA 296(18):2217–2226. doi:10.1001/jama.296.18.2217

    Article  PubMed  CAS  Google Scholar 

  3. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C (2007) Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 297(12):1319–1331. doi:10.1001/jama.297.12.1319

    Article  PubMed  CAS  Google Scholar 

  4. Wilcox JE, Fonarow GC, Yancy CW, Albert NM, Curtis AB, Heywood JT, Inge PJ, McBride ML, Mehra MR, O’Connor CM, Reynolds D, Walsh MN, Gheorghiade M (2012) Factors associated with improvement in ejection fraction in clinical practice among patients with heart failure: findings from IMPROVE HF. Am Heart J 163(1):49–56.e2. doi:10.1016/j.ahj.2011.10.001

    Google Scholar 

  5. Gheorghiade M, Adams KF, Cleland JG, Cotter G, Felker GM, Filippatos GS, Fonarow GC, Greenberg BH, Hernandez AF, Khan S, Komajda M, Konstam MA, Liu PP, Maggioni AP, Massie BM, McMurray JJ, Mehra M, Metra M, O’Connell J, O’Connor CM, Pang PS, Pina IL, Sabbah HN, Teerlink JR, Udelson JE, Yancy CW, Zannad F, Stockbridge N (2009) Phase III clinical trial end points in acute heart failure syndromes: a virtual roundtable with the Acute Heart Failure Syndromes International Working Group. Am Heart J 157(6):957–970. doi:10.1016/j.ahj.2009.04.010

    Article  PubMed  Google Scholar 

  6. Gheorghiade M, Zannad F, Sopko G, Klein L, Pina IL, Konstam MA, Massie BM, Roland E, Targum S, Collins SP, Filippatos G, Tavazzi L (2005) Acute heart failure syndromes: current state and framework for future research. Circulation 112(25):3958–3968. doi:10.1161/CIRCULATIONAHA.105.590091

    Article  PubMed  Google Scholar 

  7. Gheorghiade M, Peterson ED (2011) Improving postdischarge outcomes in patients hospitalized for acute heart failure syndromes. JAMA 305(23):2456–2457. doi:10.1001/jama.2011.836

    Article  PubMed  CAS  Google Scholar 

  8. Bock JS, Gottlieb SS (2010) Cardiorenal syndrome: new perspectives. Circulation 121(23):2592–2600. doi:10.1161/CIRCULATIONAHA.109.886473

    Article  PubMed  Google Scholar 

  9. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. New England J Med 336(16):1131–1141. doi:10.1056/NEJM199704173361603

    Article  CAS  Google Scholar 

  10. Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44. doi:10.1146/annurev.physiol.010908.163111

    Article  PubMed  CAS  Google Scholar 

  11. Paulus WJ, Bronzwaer JG (2004) Nitric oxide’s role in the heart: control of beating or breathing? Am J Physiol Heart Circ Physiol 287(1):H8–13

    Article  PubMed  CAS  Google Scholar 

  12. Mohan P, Brutsaert DL, Paulus WJ, Sys SU (1996) Myocardial contractile response to nitric oxide and cGMP. Circulation 93(6):1223–1229

    Article  PubMed  CAS  Google Scholar 

  13. Buys ES, Sips P, Vermeersch P, Raher MJ, Rogge E, Ichinose F, Dewerchin M, Bloch KD, Janssens S, Brouckaert P (2008) Gender-specific hypertension and responsiveness to nitric oxide in sGCalpha1 knockout mice. Cardiovasc Res 79(1):179–186

    Article  PubMed  CAS  Google Scholar 

  14. Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation 89(5):2070–2078

    Article  PubMed  CAS  Google Scholar 

  15. Varin R, Mulder P, Tamion F, Richard V, Henry JP, Lallemand F, Lerebours G, Thuillez C (2000) Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure : role of nitric oxide, prostanoids, oxidant stress, and bradykinin. Circulation 102(3):351–356

    Article  PubMed  CAS  Google Scholar 

  16. Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78(1):91–101

    Article  PubMed  CAS  Google Scholar 

  17. Ito N, Bartunek J, Spitzer KW, Lorell BH (1997) Effects of the nitric oxide donor sodium nitroprusside on intracellular pH and contraction in hypertrophied myocytes. Circulation 95(9):2303–2311

    Article  PubMed  CAS  Google Scholar 

  18. Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG (1994) 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res 74(5):970–978

    Article  PubMed  CAS  Google Scholar 

  19. Munzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31:2741–2748

    Article  PubMed  CAS  Google Scholar 

  20. Ontkean M, Gay R, Greenberg B (1991) Diminished endothelium-derived relaxing factor activity in an experimental model of chronic heart failure. Circ Res 69(4):1088–1096

    Article  PubMed  CAS  Google Scholar 

  21. Vanhoutte PM, Shimokawa H, Tang EH, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol (Oxf) 196(2):193–222

    Article  CAS  Google Scholar 

  22. Schmidt HH, Hofmann F, Stasch JP (2009) Handbook of experimental pharmacology. 191 cGMP generators, effectors and therapeutic implications. Preface. Handb Exp Pharmacol 191:v–vi

    Google Scholar 

  23. Ben Driss A, Devaux C, Henrion D, Duriez M, Thuillez C, Levy BI, Michel JB (2000) Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure. Circulation 101(23):2764–2770

    Article  PubMed  CAS  Google Scholar 

  24. Moraes DL, Colucci WS, Givertz MM (2000) Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation 102(14):1718–1723

    Article  PubMed  CAS  Google Scholar 

  25. Blair JE, Manuchehry A, Chana A, Rossi J, Schrier RW, Burnett JC, Gheorghiade M (2007) Prognostic markers in heart failure–congestion, neurohormones, and the cardiorenal syndrome. Acute Card Care 9(4):207–213. doi:10.1080/17482940701606913

    Article  PubMed  Google Scholar 

  26. Treasure CB, Vita JA, Cox DA, Fish RD, Gordon JB, Mudge GH, Colucci WS, Sutton MG, Selwyn AP, Alexander RW et al (1990) Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 81(3):772–779

    Article  PubMed  CAS  Google Scholar 

  27. Zeiher AM, Krause T, Schachinger V, Minners J, Moser E (1995) Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation 91(9):2345–2352

    Article  PubMed  CAS  Google Scholar 

  28. Mitchell GF, Tardif JC, Arnold JM, Marchiori G, O’Brien TX, Dunlap ME, Pfeffer MA (2001) Pulsatile hemodynamics in congestive heart failure. Hypertension 38(6):1433–1439

    Article  PubMed  CAS  Google Scholar 

  29. Ramsey MW, Goodfellow J, Jones CJ, Luddington LA, Lewis MJ, Henderson AH (1995) Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 92(11):3212–3219

    Article  PubMed  CAS  Google Scholar 

  30. Buus NH, Bottcher M, Hermansen F, Sander M, Nielsen TT, Mulvany MJ (2001) Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia. Circulation 104(19):2305–2310

    Article  PubMed  CAS  Google Scholar 

  31. Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93(5):388–398. doi:10.1161/01.RES.0000088351.58510.21

    Article  PubMed  CAS  Google Scholar 

  32. Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT, Lindsey ML, Vancon AC, Huang PL, Lee RT, Zapol WM, Picard MH (2001) Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 104(11):1286–1291

    Article  PubMed  CAS  Google Scholar 

  33. Agnoletti L, Curello S, Bachetti T, Malacarne F, Gaia G, Comini L, Volterrani M, Bonetti P, Parrinello G, Cadei M, Grigolato PG, Ferrari R (1999) Serum from patients with severe heart failure downregulates eNOS and is proapoptotic: role of tumor necrosis factor-alpha. Circulation 100(19):1983–1991

    Article  PubMed  CAS  Google Scholar 

  34. Seta Y, Shan K, Bozkurt B, Oral H, Mann DL (1996) Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail 2(3):243–249

    Article  PubMed  CAS  Google Scholar 

  35. Maxwell AJ, Schauble E, Bernstein D, Cooke JP (1998) Limb blood flow during exercise is dependent on nitric oxide. Circulation 98(4):369–374

    Article  PubMed  CAS  Google Scholar 

  36. Prasad A, Higano ST, Al Suwaidi J, Holmes DR Jr, Mathew V, Pumper G, Lennon RJ, Lerman A (2003) Abnormal coronary microvascular endothelial function in humans with asymptomatic left ventricular dysfunction. Am Heart J 146(3):549–554. doi:10.1016/S0002-8703(03)00364-8

    Article  PubMed  Google Scholar 

  37. Bachetti T (2000) Endothelial dysfunction in chronic heart failure: some new basic mechanisms. Ital Heart J 1(10):656–661

    PubMed  CAS  Google Scholar 

  38. Bank AJ, Lee PC, Kubo SH (2000) Endothelial dysfunction in patients with heart failure: relationship to disease severity. J Card Fail 6(1):29–36

    Article  PubMed  CAS  Google Scholar 

  39. Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, Yasskiy A (2005) Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation 111(3):310–314. doi:10.1161/01.CIR.0000153349.77489.CF

    Article  PubMed  Google Scholar 

  40. Mathier MA, Rose GA, Fifer MA, Miyamoto MI, Dinsmore RE, Castano HH, Dec GW, Palacios IF, Semigran MJ (1998) Coronary endothelial dysfunction in patients with acute-onset idiopathic dilated cardiomyopathy. J Am Coll Cardiol 32(1):216–224

    Article  PubMed  CAS  Google Scholar 

  41. Fischer D, Rossa S, Landmesser U, Spiekermann S, Engberding N, Hornig B, Drexler H (2005) Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. Eur Heart J 26(1):65–69. doi:10.1093/eurheartj/ehi001

    Article  PubMed  CAS  Google Scholar 

  42. Poelzl G, Frick M, Huegel H, Lackner B, Alber HF, Mair J, Herold M, Schwarzacher S, Pachinger O, Weidinger F (2005) Chronic heart failure is associated with vascular remodeling of the brachial artery. Eur J Heart Fail 7(1):43–48. doi:10.1016/j.ejheart.2004.04.008

    Article  PubMed  Google Scholar 

  43. Meyer B, Mortl D, Strecker K, Hulsmann M, Kulemann V, Neunteufl T, Pacher R, Berger R (2005) Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. J Am Coll Cardiol 46(6):1011–1018. doi:10.1016/j.jacc.2005.04.060

    Article  PubMed  Google Scholar 

  44. Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, Vaziri ND (2005) A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression. J Appl Physiol 98(1):203–210. doi:10.1152/japplphysiol.00463.2004

    Article  PubMed  CAS  Google Scholar 

  45. Murakami T, Mizuno S, Ohsato K, Moriuchi I, Arai Y, Nio Y, Kaku B, Takahashi Y, Ohnaka M (1999) Effects of troglitazone on frequency of coronary vasospastic-induced angina pectoris in patients with diabetes mellitus. Am J Cardiol 84(1):92–94, A98

    Google Scholar 

  46. Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101(16):1899–1906

    Article  PubMed  CAS  Google Scholar 

  47. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A (2000) Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101(9):948–954

    Article  PubMed  CAS  Google Scholar 

  48. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106(6):653–658

    Article  PubMed  Google Scholar 

  49. Brevetti G, Silvestro A, Schiano V, Chiariello M (2003) Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation 108(17):2093–2098

    Article  PubMed  Google Scholar 

  50. Chan SY, Mancini GB, Kuramoto L, Schulzer M, Frohlich J, Ignaszewski A (2003) The prognostic importance of endothelial dysfunction and carotid atheroma burden in patients with coronary artery disease. J Am Coll Cardiol 42(6):1037–1043

    Article  PubMed  CAS  Google Scholar 

  51. Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98(24):2709–2715

    Article  PubMed  CAS  Google Scholar 

  52. Jones SP, Greer JJ, van Haperen R, Duncker DJ, de Crom R, Lefer DJ (2003) Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc Natl Acad Sci USA 100(8):4891–4896. doi:10.1073/pnas.0837428100

    Article  PubMed  CAS  Google Scholar 

  53. Pacher P, Schulz R, Liaudet L, Szabo C (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26(6):302–310

    Article  PubMed  CAS  Google Scholar 

  54. Schmidt HH, Hofmann F, Stasch JP (2009) Preface. In: Hofmann F (ed) cGMP: generators, effectors and therapeutic implications, vol 191. Handb Exp Pharmacol. Springer, Berlin, pp v–vi

  55. Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, Stasch JP (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5(9):755–768

    Article  PubMed  CAS  Google Scholar 

  56. Hobbs AJ, Stasch JP (2010) Soluble guanylate cyclase: allosteric activation and redox regulation. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology. (2nd edn). Academic Press, pp 301–326

  57. Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, Stasch JP (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5(9):755–768. doi:10.1038/nrd2038

    Article  PubMed  CAS  Google Scholar 

  58. Gladwin MT (2006) Deconstructing endothelial dysfunction: soluble guanylyl cyclase oxidation and the NO resistance syndrome. J Clin Invest 116(9):2330–2332. doi:10.1172/JCI29807

    Article  PubMed  CAS  Google Scholar 

  59. Munzel T, Genth-Zotz S, Hink U (2007) Targeting heme-oxidized soluble guanylate cyclase: solution for all cardiorenal problems in heart failure? Hypertension 49(5):974–976. doi:10.1161/HYPERTENSIONAHA.106.085456

    Article  PubMed  CAS  Google Scholar 

  60. Ahrens I, Habersberger J, Baumlin N, Qian H, Smith BK, Stasch JP, Bode C, Schmidt HH, Peter K (2011) Measuring oxidative burden and predicting pharmacological response in coronary artery disease patients with a novel direct activator of haem-free/oxidised sGC. Atherosclerosis 218(2):431–434. doi:10.1016/j.atherosclerosis.2011.06.042

    Article  PubMed  CAS  Google Scholar 

  61. Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, Arun kumar HS, Meurer S, Deile M, Taye A, Knorr A, Lapp H, Muller H, Turgay Y, Rothkegel C, Tersteegen A, Kemp-Harper B, Muller-Esterl W, Schmidt HH (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116(9):2552–2561. doi:10.1172/JCI28371

    Article  PubMed  CAS  Google Scholar 

  62. Stasch JP, Pacher P, Evgenov OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123(20):2263–2273. doi:10.1161/CIRCULATIONAHA.110.981738

    Article  PubMed  Google Scholar 

  63. Lapp H, Mitrovic V, Franz N, Heuer H, Buerke M, Wolfertz J, Mueck W, Unger S, Wensing G, Frey R (2009) Cinaciguat (BAY 58-2667) improves cardiopulmonary hemodynamics in patients with acute decompensated heart failure. Circulation 119(21):2781–2788. doi:10.1161/CIRCULATIONAHA.108.800292

    Article  PubMed  CAS  Google Scholar 

  64. Gheorghiade M, Erdmann E, Ferrari R, Filippatos G, Levy P, Maggioni A, Mebazaa A, Nowack C (2011) Treatment of acute decompensated heart failure with the soluble guanylate cyclase activator cinaciguat: The COMPOSE program – three randomized, controlled, phase IIb studies. J Card Fail 17(11):971. doi:10.1016/j.cardfail.2011.10.004

    Article  Google Scholar 

  65. Martin F, Baskaran P, Ma X, Dunten PW, Schaefer M, Stasch JP, Beuve A, van den Akker F (2010) Structure of cinaciguat (BAY 58-2667) bound to nostoc H-NOX domain reveals insights into heme-mimetic activation of the soluble guanylyl cyclase. J Biol Chem 285(29):22651–22657

    Article  PubMed  CAS  Google Scholar 

  66. Stasch JP, Hobbs AJ (2009) NO-independent, haem-dependent soluble guanylate cyclasestimulators. Handb Exp Pharmacol (191):277–308

  67. Thoonen R, Buys E, Cauwels A, Rogge E, Nimmegeers S, Van den Hemel M, Hochepied T, Van de Voorde J, Stasch JP, Brouckaert P (2009) NO-insensitive sGCbeta1 H105F knockin mice: if NO has no place to go. BMC Pharmacol 9 (Suppl. 1):S41 (abstr)

    Google Scholar 

  68. Mittendorf J, Weigand S, Alonso-Alija C, Bischoff E, Feurer A, Gerisch M, Kern A, Knorr A, Lang D, Muenter K, Radtke M, Schirok H, Schlemmer KH, Stahl E, Straub A, Wunder F, Stasch JP (2009) Discovery of riociguat (BAY 63-2521): a potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension. ChemMedChem 4(5):853–865

    Article  PubMed  CAS  Google Scholar 

  69. Straub A, Stasch JP, Alonso-Alija C, Benet-Buchholz J, Ducke B, Feurer A, Furstner C (2001) NO-independent stimulators of soluble guanylate cyclase. Bioorg Med Chem Lett 11(6):781–784

    Article  PubMed  CAS  Google Scholar 

  70. Stasch JP, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Minuth T, Perzborn E, Schramm M, Straub A (2002) Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vitro studies. Br J Pharmacol 135(2):333–343

    Article  PubMed  CAS  Google Scholar 

  71. Stasch JP, Dembowsky K, Perzborn E, Stahl E, Schramm M (2002) Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vivo studies. Br J Pharmacol 135(2):344–355. doi:10.1038/sj.bjp.0704483

    Article  PubMed  CAS  Google Scholar 

  72. Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Gerzer R, Minuth T, Perzborn E, Pleiss U, Schroder H, Schroeder W, Stahl E, Steinke W, Straub A, Schramm M (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410(6825):212–215

    Article  PubMed  CAS  Google Scholar 

  73. Schindler U, Strobel H, Schonafinger K, Linz W, Lohn M, Martorana PA, Rutten H, Schindler PW, Busch AE, Sohn M, Topfer A, Pistorius A, Jannek C, Mulsch A (2006) Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase. Mol Pharmacol 69(4):1260–1268

    Article  PubMed  CAS  Google Scholar 

  74. Masuyama H, Tsuruda T, Sekita Y, Hatakeyama K, Imamura T, Kato J, Asada Y, Stasch JP, Kitamura K (2009) Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res 32(7):597–603

    Google Scholar 

  75. Jones ES, Kemp-Harper B, Stasch JP, Schmidt H, Widdop RE (2009) Cardioprotective effects in aged spontaneously hypertensive rats due to chronic stimulation/activation of sGC without hypotension. BMC Pharmacol 9(Suppl 1):P29 (abstr)

    Google Scholar 

  76. Sharkovska Y, Kalk P, Lawrenz B, Godes M, Hoffmann LS, Wellkisch K, Geschka S, Relle K, Hocher B, Stasch JP (2010) Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models. J Hypertens 28(8):1666–1675

    Article  PubMed  CAS  Google Scholar 

  77. Boerrigter G, Costello-Boerrigter LC, Cataliotti A, Tsuruda T, Harty GJ, Lapp H, Stasch JP, Burnett JC Jr (2003) Cardiorenal and humoral properties of a novel direct soluble guanylate cyclase stimulator BAY 41-2272 in experimental congestive heart failure. Circulation 107(5):686–689

    Article  PubMed  CAS  Google Scholar 

  78. Masuyama H, Tsuruda T, Kato J, Imamura T, Asada Y, Stasch JP, Kitamura K, Eto T (2006) Soluble guanylate cyclase stimulation on cardiovascular remodeling in angiotensin II-induced hypertensive rats. Hypertension 48(5):972–978

    Article  PubMed  CAS  Google Scholar 

  79. Schafer A, Fraccarollo D, Werner L, Bauersachs J (2010) Guanylyl cyclase activator ataciguat improves vascular function and reduces platelet activation in heart failure. Pharmacol Res Official J Italian Pharmacol Soc 62(5):432–438. doi:10.1016/j.phrs.2010.06.008

    Article  CAS  Google Scholar 

  80. Benz K, Orth SR, Simonaviciene A, Linz W, Schindler U, Rutten H, Amann K (2007) Blood pressure-independent effect of long-term treatment with the soluble heme-independent guanylyl cyclase activator HMR1766 on progression in a model of noninflammatory chronic renal damage. Kidney Blood Press Res 30(4):224–233

    Article  PubMed  CAS  Google Scholar 

  81. Melichar VO, Behr-Roussel D, Zabel U, Uttenthal LO, Rodrigo J, Rupin A, Verbeuren TJ, Kumar HSA, Schmidt HH (2004) Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. Proc Natl Acad Sci USA 101(47):16671–16676

    Article  PubMed  CAS  Google Scholar 

  82. Ahluwalia A, Foster P, Scotland RS, McLean PG, Mathur A, Perretti M, Moncada S, Hobbs AJ (2004) Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc Natl Acad Sci USA 101(5):1386–1391

    Article  PubMed  CAS  Google Scholar 

  83. Sovershaev MA, Egorina EM, Hansen JB, Østerud B, Stasch JP, Evgenov OV (2009) Soluble guanylate cyclase agonists inhibit expression and procoagulant activity of tissue factor. Arterioscl Thromb Vasc Biol 29(10):1578–1586

    Article  PubMed  CAS  Google Scholar 

  84. Peters H, Wang Y, Loof T, Martini S, Kron S, Kramer S, Neumayer HH (2004) Expression and activity of soluble guanylate cyclase in injury and repair of anti-thy1 glomerulonephritis. Kidney Int 66(6):2224–2236. doi:10.1111/j.1523-1755.2004.66012.x

    Article  PubMed  CAS  Google Scholar 

  85. Hohenstein B, Daniel C, Wagner A, Stasch JP, Hugo C (2005) Stimulation of soluble guanylyl cyclase inhibits mesangial cell proliferation and matrix accumulation in experimental glomerulonephritis. Am J Physiol Renal Physiol 288(4):F685–693. doi:10.1152/ajprenal.00280.2004

    Article  PubMed  CAS  Google Scholar 

  86. Wang Y, Kramer S, Loof T, Martini S, Kron S, Kawachi H, Shimizu F, Neumayer HH, Peters H (2005) Stimulation of soluble guanylate cyclase slows progression in anti-thy1-induced chronic glomerulosclerosis. Kidney Int 68(1):47–61. doi:10.1111/j.1523-1755.2005.00380.x

    Article  PubMed  CAS  Google Scholar 

  87. Wang Y, Kramer S, Loof T, Martini S, Kron S, Kawachi H, Shimizu F, Neumayer HH, Peters H (2006) Enhancing cGMP in experimental progressive renal fibrosis: soluble guanylate cyclase stimulation vs. phosphodiesterase inhibition. Am J Physiol Renal Physiol 290(1):F167–F176. doi:10.1152/ajprenal.00197.2005

    Google Scholar 

  88. Alter M, Ott I, von Websky K, Tsuprykov O, Sharkovska Y, Krause-Relle K, Raila J, Henze A, Kretschmer A, Stasch J-P, Hocher B (2011) Additional stimulation of sGC on top of standard treatment with ARB`s may offer a new therapeutic approach for the treatment of diabetic nephropathy resistant to ARB treatment alone. BMC Pharmacol 11(Suppl 1):P1

    Article  Google Scholar 

  89. Kalk P, Godes M, Relle K, Rothkegel C, Hucke A, Stasch JP, Hocher B (2006) NO-independent activation of soluble guanylate cyclase prevents disease progression in rats with 5/6 nephrectomy. Br J Pharmacol 148(6):853–859. doi:10.1038/sj.bjp.0706792

    Article  PubMed  CAS  Google Scholar 

  90. Hoffman L (2009) http://digital.bibliothek.uni-halle.de/hs/content/titleinfo/711081. Accessed: November 10, 2011

  91. Mitrovic V, Swidnicki B, Ghofrani A, Mück W, Kirschbaum N, Mittendorf J, Stasch JP, Wensing G, Frey R, Lentini S (2009) Acute hemodynamic response to single oral doses of BAY 60-4552, a soluble guanylate cyclase stimulator, in patients with biventricular heart failure. BMC Pharmacology 9 (1):P51 (abstr)

    Google Scholar 

  92. Vaidya VS, Waikar SS, Ferguson MA, Collings FB, Sunderland K, Gioules C, Bradwin G, Matsouaka R, Betensky RA, Curhan GC, Bonventre JV (2008) Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci 1(3):200–208

    Article  PubMed  CAS  Google Scholar 

  93. Doi K, Noiri E, Sugaya T (2010) Urinary L-type fatty acid-binding protein as a new renal biomarker in critical care. Curr Opin Crit Care. doi:10.1097/MCC.0b013e32833e2fa4

    PubMed  Google Scholar 

Download references

Conflict of interest

Mihai Gheorghiade, MD, is consultant for Abbott Laboratories, Astellas, AstraZeneca, Bayer HealthCare AG, CorThera, Cytokinetics, DebioPharm S.A., Errekappa Terapeutici, GlaxoSmithKline, Ikaria, Johnson & Johnson, Medtronic, Merck, Novartis Pharma AG, Otsuka Pharmaceuticals, Palatin Technologies, Pericor Therapeutics, Protein Design Laboratories, Sanofi-Aventis, Sigma Tau, Solvay Pharmaceuticals, Takeda Pharmaceutical, and Trevena Therapeutics. Hani N. Sabbah, PhD, received research grants from Bayer Healthcare and is consultant to Bayer Healthcare. Lothar Roessig, MD, is a full-time employee at Bayer HealthCare AG. Michael Böhm, MD, was supported by Boehringer-Ingelheim, Servier, Pfizer, and Medtronic. John C. Burnett, MD, received research grant from Bayer. Umberto Campia, MD, was supported by a National Institutes of Health grant (K12-HL083790). John G.F. Cleland, MD, received an honorarium from Bayer for an advisory board. Funding level is modest. Sean P. Collins, MD, MSc, received research grant and support from Abbott Point-of-Care, NIH/NHLBI. Consultation was made with Abbot Point-of-Care, Bayer, Trevena, Novartis, and The Medicines Company. Gregg C. Fonarow, MD, is consultant to Novartis, Medtronic, and Takeda. Phillip D. Levy, MD, MPH, received research grant/support from Corthera, Inc. and Bayer Schering AG; consultant for Corthera, Inc., The Medicines Company, Bayer Schering Pharma AG, Trevena, Inc., and EKR Therapeutics. Marco Metra, MD received honoraria for participation to advisory board meetings or speeches for Bayer, Corthera, and Novartis. Bertram Pitt, MD is consultant to Pfizer, Novartis, Bayer, Merck, Takeda, Astra Zeneca, GE-Healthcare, BG-medicine, and Relypsa. Stock options were made with BG-medicine and Relypsa. Grants were received from Forrest Laboratories and Novartis. Piotr Ponikowski, MD, PhD, is consultant to Bayer Schering AG, Corthera, Amgen, Johnson&Johnson. Naoki Sato, MD, PhD, is consultant to Chugai Pharmaceutical Company and honoraria from Daiichi-Sankyo, Otsuka, Philips Respironics, Astellas, Ono, Eisai, Chugai, Mitsubishi-Tanabe, Sanofi-Aventis, and Novartis pharmaceuticals. Adriaan A. Voors, MD, PhD, has received consulting fee from Bayer. Johannes-Peter Stasch, PhD, is a full-time employee at Bayer HealthCare AG. Javed Butler, MD, MPH, is consultant to Cardiomems, Trevena, Bayer Healthcare, Takeda, and Amgen and associated with Events Committee for WorldHeart and Corthera. Research support was provided by GE Healthcare and Medtronic. Catherine N. Marti, MD, and Stephen J. Greene, MD, did not received any support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Gheorghiade.

Additional information

On behalf of the Academic Research Team in Heart Failure (ART-HF).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheorghiade, M., Marti, C.N., Sabbah, H.N. et al. Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev 18, 123–134 (2013). https://doi.org/10.1007/s10741-012-9323-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9323-1

Keywords

Navigation