Skip to main content

Advertisement

Log in

Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

This study investigated conditions for optimal in vitro propagation of human skin-derived mesenchymal stem cells (S-MSC). Forty primary skin-derived precursor cell (SKP) cultures were established from both male and female donors (age 29–65 years) and eight of them were randomly selected for in-depth characterization. Effects of basic fibroblast growth factor (FGF-2), epidermal growth factor (EGF), leukemia inhibiting factor (LIF) and dibutyryl-cyclic adenosine monophosphate (db-cAMP) on S-MSC proliferation were investigated. Primary SKP cultures were >95% homogenous for CD90, CD73, and CD105 marker expression enabling to classify these cells as S-MSC. FGF-2 dose-dependent stimulation was observed in low serum medium only, whereas EGF neither stimulated S-MSC proliferation nor potentates the effect of FGF-2. Pronounced donor to donor differences among S-MSC cultures were observed in 3-day proliferation assay. This study demonstrates that homogenous S-MSC populations can be reproducibly isolated from individual donors of different age. Optimal cell culture conditions for in vitro propagation of S-MSC are B27 supplemented or low serum media with FGF-2 (4 ng/ml). EGF and LIF as well as db-cAMP are dispensable for S-MSC proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ancans J, Tobin DJ, Hoogduijn MJ et al (2001) Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp Cell Res 268:26–35. doi:10.1006/excr.2001.5251

    Article  CAS  Google Scholar 

  • Belicchi M, Pisati F, Lopa R et al (2004) Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J Neurosci Res 77:475–486. doi:10.1002/jnr.20151

    Article  CAS  Google Scholar 

  • Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373. doi:10.1146/annurev.cellbio.22.010305.104357

    Article  CAS  Google Scholar 

  • Brown J, Greaves MF, Molgaard HV (1991) The gene encoding the stem cell antigen, CD34, is conserved in mouse and expressed in haemopoietic progenitor cell lines, brain, and embryonic fibroblasts. Int Immunol 3(2):175–184. doi:10.1093/intimm/3.2.175

    Article  CAS  Google Scholar 

  • Chachques JC, Herreros J, Trainini J et al (2004) Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol 95(suppl 1):S29–S33. doi:10.1016/S0167-5273(04)90009-5

    Article  Google Scholar 

  • Doerr HW, Cinatl CA, Sturmer M et al (2003) Prions and orthopedic surgery. Infection 31:163–171

    CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905

    Article  CAS  Google Scholar 

  • Fernandes KJ, McKenzie IA, Mill P et al (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6(11):1082–1093. doi:10.1038/ncb1181

    Article  CAS  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbours: stem cells and their niche. Cell 41:683–686

    Google Scholar 

  • Joannides A, Gaughwin P, Schwiening C et al (2004) Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364:172–178. doi:10.1016/S0140-6736(04)16630-0

    Article  CAS  Google Scholar 

  • Kaiser S, Hackanson B, Follo M et al (2007) BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype. Cytotherapy 9(5):439–450. doi:10.1080/14653240701358445

    Article  CAS  Google Scholar 

  • Liang CJ, Ives HE, Yang CM et al (2008) 20-HETE inhibits the proliferation of vascular smooth muscle cells via transforming growth factor. J Lipid Res 49(1):66–73. doi:10.1194/jlr.M700155-JLR200

    Article  CAS  Google Scholar 

  • Liu Y, Song Z, Zhao Y et al (2006) A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun 346:131–139. doi:10.1016/j.bbrc.2006.05.086

    Article  CAS  Google Scholar 

  • Mannello P, Tonti GA (2007) Concice review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25:1603–1609. doi:10.1634/stemcells.2007-0127

    Article  CAS  Google Scholar 

  • Metcalf D (2003) The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21(1):5–14. doi:10.1634/stemcells.21-1-5

    Article  CAS  Google Scholar 

  • Nelson AD, Svendsen CN (2006) Low concentrations of extracellular FGF-2 are sufficient but not essential for neurogenesis from human neural progenitor cells. Mol Cell Neurosci 33(1):29–35. doi:10.1016/j.mcn.2006.06.003

    Article  CAS  Google Scholar 

  • Oda K, Matsuoka Y, Funahashi A et al (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:2005.0010. doi:10.1038/msb4100014

  • Ohyama M, Terunuma A, Tock CL et al (2006) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116(1):249–260. doi:10.1172/JCI26043

    Article  CAS  Google Scholar 

  • Okada-Ban M, Thiery JP, Jouanneau J (2000) Fibroblast growth factor-2. Int J Biochem Cell Biol 32(3):263–267. doi:10.1016/S1357-2725(99)00133-8

    Article  CAS  Google Scholar 

  • Raposio E, Guida C, Baldelli I et al (2007) Characterization of multipotent cells from human adult hair follicles. Toxicol In Vitro 21(2):320–323. doi:10.1016/j.tiv.2006.07.017

    Article  CAS  Google Scholar 

  • Rittie L, Fisher GJ (2005) Isolation and culture of skin fibroblasts. Methods Mol Med 117:83–98

    CAS  Google Scholar 

  • Schumm MA, Castellanos DA, Frydel BR et al (2002) Enhanced viability and neuronal differentiation of neural progenitors by chromaffin cell co-culture. Brain Res Dev 137(2):115–125. doi:10.1016/S0165-3806(02)00415-7

    Article  CAS  Google Scholar 

  • Shahdadfar A, Fronssdal K, Haug T et al (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366. doi:10.1634/stemcells.2005-0094

    Article  CAS  Google Scholar 

  • Shih DT, Lee DC, Chen SC et al (2005) Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 23(7):1012–1020. doi:10.1634/stemcells.2004-0125

    Article  CAS  Google Scholar 

  • Shihabuddin LS, Ray J, Gage FH (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol 148:577–586. doi:10.1006/exnr.1997.6697

    Article  CAS  Google Scholar 

  • Sotiropoulou PA, Perez SA, Salagianni M et al (2006) Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells 24:1409–1410. doi:10.1634/stemcells.2005-0654

    Article  Google Scholar 

  • Sudo K, Kanno M, Miharada K et al (2007) Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells 25(7):1610–1617. doi:10.1634/stemcells.2006-0504

    Article  CAS  Google Scholar 

  • Toma JG, Akhavan M, Fernandes KJ et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784. doi:10.1038/ncb0901-778

    Article  CAS  Google Scholar 

  • Toma JG, McKenzie IA, Bagli SD et al (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23:727–737. doi:10.1634/stemcells.2004-0134

    Article  CAS  Google Scholar 

  • Tsatmali M, Ancans J, Yukitake J et al (2000) Skin POMC peptides: their actions at the human MC-1 receptor and roles in the tanning response. Pigment Cell Res 13(Suppl 8):125–129. doi:10.1034/j.1600-0749.13.s8.22.x

    Article  Google Scholar 

  • Tsatmali M, Ancans J, Thody AJ (2002) Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 50:125–133

    CAS  Google Scholar 

  • Watt FM, Lo Celso C, Silva-Vargas V (2006) Epidermal stem cells: an update. Curr Opin Genet Dev 16(5):518–524. doi:10.1016/j.gde.2006.08.006

    Article  CAS  Google Scholar 

  • Williams RL, Hilton DJ, Pease S et al (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336(6200):684–687. doi:10.1038/336684a0

    Article  CAS  Google Scholar 

  • Wong CE, Paratore C, Dours-Zimmermann MT et al (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175(6):1005–1015. doi:10.1083/jcb.200606062

    Article  CAS  Google Scholar 

  • Young HE, Steele TA, Bray RA et al (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62. doi:10.1002/ar.1128

    Article  CAS  Google Scholar 

  • Zaragosi LE, Ailhaud G, Dani C (2006) Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24:2412–2419. doi:10.1634/stemcells.2006-0006

    Article  CAS  Google Scholar 

  • Zhu C, Joyce NC (2004) Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 45:1743–1751. doi:10.1167/iovs.03-0814

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stengrevics, Riga Eastern Hospital, and Dr. Jankovskis, Experimental and Clinical Medicine Institute, University of Latvia, for help with tissue samples, and Dr. Dambrova and Dr. Liepinsh from Latvian Institute of Organic Synthesis for collaboration. The presented work was supported by the European Regional Development Fund (ERDF) project No.VPD/ERAF/CFLA/05/APK/2.5.2./000072/036.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Una Riekstina or Janis Ancans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riekstina, U., Muceniece, R., Cakstina, I. et al. Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology 58, 153–162 (2008). https://doi.org/10.1007/s10616-009-9183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-009-9183-2

Keywords

Navigation