Skip to main content

Advertisement

Log in

An Immortalized Human Blood-Nerve Barrier Endothelial Cell Line for In Vitro Permeability Studies

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Solute and macromolecular transport studies may elucidate nutritional requirements and drug effects in healthy and diseased peripheral nerves. Endoneurial endothelial cells are specialized microvascular cells that form the restrictive blood-nerve barrier (BNB). Primary human endoneurial endothelial cells (pHEndECs) are difficult to isolate, limiting their widespread availability for biomedical research. We developed a simian virus-40 large T-antigen (SV40-LTA) immortalized human BNB cell line via stable transfection of low passage pHEndECs and observed continuous growth in culture for >45 population doublings. As observed with pHEndECs, the immortalized BNB endothelial cells were Ulex Europaeus agglutinin-1-positive and endocytosed low density lipoprotein, but lost von Willebrand factor expression. Glucose transporter-1, P-glycoprotein (P-gp), γ-glutamyl transpeptidase (γ-GT), large neutral amino acid transporter-1 (LAT-1), creatine transporter (CRT), and monocarboxylate transporter-1 (MCT-1) mRNA expression were retained at all passages with loss of alkaline phosphatase (AP) expression after passages 16–20. Compared with an SV40-LTA immortalized human blood-brain barrier endothelial cell line, there was increased γ-GT protein expression, equivalent expression of organic anion transporting polypeptide-C (OATP-C), organic anion transporter 3 (OAT-3), MCT-1, and LAT-1, and reduced expression of AP, CRT, and P-gp by the BNB cell line at passage 20. Further studies demonstrated lower transendothelial electrical resistance (~181 vs. 191 Ω cm2), equivalent permeability to fluoresceinated sodium (4.84 vs. 4.39 %), and lower permeability to fluoresceinated high molecular weight (70 kDa) dextran (0.39 vs. 0.52 %) by the BNB cell line. This cell line retained essential molecular and biophysical properties suitable for in vitro peripheral nerve permeability studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aird W (2007a) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    Article  PubMed  CAS  Google Scholar 

  • Aird W (2007b) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100:174–190

    Article  PubMed  CAS  Google Scholar 

  • Allt G, Lawrenson J (2000) The blood-nerve barrier: enzymes, transporters and receptors—a comparison with the blood-brain barrier. Brain Res Bull 52:1–12

    Article  PubMed  CAS  Google Scholar 

  • Argall K, Armati P, Pollard J (1994) A method for the isolation and culture of rat peripheral nerve vascular endothelial cells. Mol Cell Neurosci 5:413–417

    Article  PubMed  CAS  Google Scholar 

  • Bell M, Weddell A (1984) A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals. Brain 107:871–898

    Article  PubMed  Google Scholar 

  • Burckhardt G, Burckhardt BC (2011) In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 201:29–104. doi:10.1007/978-3-642-14541-4_2

    Article  PubMed  CAS  Google Scholar 

  • Courtay C, Oster T, Michelet F, Visvikis A, Diederich M, Wellman M, Siest G (1992) Gamma-glutamyltransferase: nucleotide sequence of the human pancreatic cDNA. Evidence for a ubiquitous gamma-glutamyltransferase polypeptide in human tissues. Biochem Pharmacol 43:2527–2533

    Article  PubMed  CAS  Google Scholar 

  • Froehner S, Davies A, Baldwin S, Lienhard G (1988) The blood-nerve barrier is rich in glucose transporter. J Neurocytol 17:173–178

    Article  PubMed  CAS  Google Scholar 

  • Gallo R, Dorschner R, Takashima S, Klagsbrun M, Eriksson E, Bernfield M (1997) Endothelial cell surface alkaline phosphatase activity is induced by IL-6 released during wound repair. J Invest Dermatol 109:597–603

    Article  PubMed  CAS  Google Scholar 

  • Hawkins R, O’Kane R, Simpson I, Viña J (2006) Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 136:218S–226S

    PubMed  CAS  Google Scholar 

  • He X, Ee PL, Coon JS, Beck WT (2004) Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin Cancer Res 10:4652–4660. doi:10.1158/1078-0432.CCR-03-0439

    Article  PubMed  CAS  Google Scholar 

  • Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP, Kirchgessner TG (1999) A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem 274:37161–37168

    Article  PubMed  CAS  Google Scholar 

  • Kanda T, Iwasaki T, Yamawaki M, Ikeda K (1997) Isolation and culture of bovine endothelial cells of endoneurial origin. J Neurosci Res 49:769–777

    Article  PubMed  CAS  Google Scholar 

  • Konig J, Cui Y, Nies AT, Keppler D (2000) A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 278:G156–G164

    PubMed  CAS  Google Scholar 

  • Latker C, Shinowara N, Miller J, Rapoport S (1987) Differential localization of alkaline phosphatase in barrier tissues of the frog and rat nervous systems: a cytochemical and biochemical study. J Comp Neurol 264:291–302

    Article  PubMed  CAS  Google Scholar 

  • Malmgren L, Olsson Y (1980) Differences between the peripheral and the central nervous system in permeability to sodium fluorescein. J Comp Neurol 191:103–107. doi:10.1002/cne.901910106

    Article  PubMed  CAS  Google Scholar 

  • Man S, Ubogu E, Williams K, Tucky B, Callahan M, Ransohoff R (2008) Human brain microvascular endothelial cells and umbilical vein endothelial cells differentially facilitate leukocyte recruitment and utilize chemokines for T cell migration. Clin Dev Immunol 2008:384982

    Article  PubMed  Google Scholar 

  • Mizisin AP, Weerasuriya A (2011) Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol 121:291–312. doi:10.1007/s00401-010-0783-x

    Article  PubMed  CAS  Google Scholar 

  • Murphy H, Bakopoulos N, Dame M, Varani J, Ward P (1998) Heterogeneity of vascular endothelial cells: differences in susceptibility to neutrophil-mediated injury. Microvasc Res 56:203–211. doi:10.1006/mvre.1998.2110

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki S, Tachikawa M, Takanaga H, Shimizu H, Watanabe M, Hosoya K, Terasaki T (2002) The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab 22:1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Olsson Y (1990) Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol 5:265–311

    PubMed  CAS  Google Scholar 

  • Orte C, Lawrenson J, Finn T, Reid A, Allt G (1999) A comparison of blood-brain barrier and blood-nerve barrier endothelial cell markers. Anat Embryol (Berl) 199:509–517

    Article  CAS  Google Scholar 

  • Poduslo J, Curran G, Berg C (1994) Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc Natl Acad Sci USA 91:5705–5709

    Article  PubMed  CAS  Google Scholar 

  • Reina M, López A, Villanueva M, de Andrés J, León G (2000) Morphology of peripheral nerves, their sheaths, and their vascularization. Rev Esp Anestesiol Reanim 47:464–475

    PubMed  CAS  Google Scholar 

  • Reina M, López A, Villanueva M, De Andrés J, Machés F (2003) The blood-nerve barrier in peripheral nerves. Rev Esp Anestesiol Reanim 50:80–86

    PubMed  CAS  Google Scholar 

  • Rondaij M, Bierings R, Kragt A, van Mourik J, Voorberg J (2006) Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 26:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Zhang Z, Ohtsubo T, Noda I, Shibamori Y, Yamamoto T, Saito H (2001) Homozygous disruption of the mdrla P-glycoprotein gene affects blood-nerve barrier function in mice administered with neurotoxic drugs. Acta Otolaryngol 121:735–742

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Shimizu F, Nakayama H, Abe M, Maeda T, Ohtsuki S, Terasaki T, Obinata M, Ueda M, Takahashi R, Kanda T (2007) Endothelial cells constituting blood-nerve barrier have highly specialized characteristics as barrier-forming cells. Cell Struct Funct 32:139–147

    Article  PubMed  CAS  Google Scholar 

  • Schwartz B, Vicart P, Delouis C, Paulin D (1991) Mammalian cell lines can be efficiently established in vitro upon expression of the SV40 large T antigen driven by a promoter sequence derived from the human vimentin gene. Biol Cell 73:7–14

    Article  PubMed  CAS  Google Scholar 

  • Sharom FJ (2011) The P-glycoprotein multidrug transporter. Essays Biochem 50:161–178. doi:10.1042/bse0500161

    Article  PubMed  CAS  Google Scholar 

  • Shimizu F, Sano Y, Abe MA, Maeda T, Ohtsuki S, Terasaki T, Kanda T (2011) Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol 226:255–266. doi:10.1002/jcp.22337

    Article  PubMed  CAS  Google Scholar 

  • Stins M, Badger J, Sik Kim K (2001) Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 30:19–28

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Sawasaki Y, Hata J, Mukai K, Goto T (1990) Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev Biol 26:265–274

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen EB, Veenstra R, van Wijk R, Molema G, Hoekstra A, Ruiters MH, van der Meer J (2000) Characterization of immortalized human umbilical and iliac vein endothelial cell lines after transfection with SV40 large T-antigen. Blood Coagul Fibrinolysis 11:15–25

    PubMed  Google Scholar 

  • van Mourik J, Romani de Wit T, Voorberg J (2002) Biogenesis and exocytosis of Weibel-Palade bodies. Histochem Cell Biol 117:113–122

    Article  PubMed  Google Scholar 

  • VanWert AL, Gionfriddo MR, Sweet DH (2010) Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos 31:1–71. doi:10.1002/bdd.693

    PubMed  CAS  Google Scholar 

  • Véga C, Poitry-Yamate C, Jirounek P, Tsacopoulos M, Coles J (1998) Lactate is released and taken up by isolated rabbit vagus nerve during aerobic metabolism. J Neurochem 71:330–337

    Article  PubMed  Google Scholar 

  • Yano K, Gale D, Massberg S, Cheruvu P, Monahan-Earley R, Morgan E, Haig D, von Andrian U, Dvorak A, Aird W (2007) Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. Blood 109:613–615

    Article  PubMed  CAS  Google Scholar 

  • Yosef N, Xia R, Ubogu E (2010) Development and characterization of a novel human in vitro blood-nerve barrier model using primary endoneurial endothelial cells. J Neuropathol Exp Neurol 69:82–97

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Monique Stins for providing THBMECs. This work was supported by a Baylor College of Medicine New Investigator Start-Up Award (2007–2011). The Neuromuscular Immunopathology Research Laboratory is currently supported by the National Institutes of Health (NIH) grants R21 NS073702, R21 NS078226, and R01 NS075212. The content is solely the responsibility of the author and does not necessarily represent the official views of the NIH. The funding sources had no involvement in the conduct of the research, manuscript preparation, data collection/analyses, or the decision to submit this work for publication.

Conflict of interest

There are no financial conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eroboghene E. Ubogu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yosef, N., Ubogu, E.E. An Immortalized Human Blood-Nerve Barrier Endothelial Cell Line for In Vitro Permeability Studies. Cell Mol Neurobiol 33, 175–186 (2013). https://doi.org/10.1007/s10571-012-9882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9882-7

Keywords

Navigation