Skip to main content

Advertisement

Log in

Age and Sex Dependent Alteration in Presenilin Expression in Mouse Cerebral Cortex

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

(1) Presenilin (PS) expression is regulated by several cellular and extracellular factors which change with age and sex. Both age and sex are key risk factors for Alzheimer’s disease (AD), which is linked to mutations in PS genes. (2) We have analyzed the effect of age and sex on PS expression by northern hybridization and western blot analysis using the cerebral cortex of adult (24 ± 2 weeks) and old (65 ± 5 weeks) mice. (3) Our results demonstrate that PS1 was downregulated and PS 2 was upregulated in old mice of both sexes. The level of PS 1 was relatively higher and that of PS 2 was lower in female than male mice of same age group. Taken together, these findings show age and sex dependent alteration in PS expression, which in turn may influence the signal transduction pathways and consequently brain functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bazan NG, Lukiw WJ (2002) Cyclooxygenase-2 and presenilin-1 gene expression induced by interleukin-1 beta and amyloid beta 42 peptide is potentiated by hypoxia in primary human neural cells. J Biol Chem 277:30359–30367

    Article  PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Giuli C, Pieri C, Paci D (1986) Age-related morphological rearrangements of synaptic junctions in the rat cerebellum and hippocampus. Arch Gerontol Geriatr 5:297–304

    Article  PubMed  CAS  Google Scholar 

  • Capell A, Grunberg J, Pesold B, Diehlmann A, Citron M, Nixon R, Beyreuther K, Selkoe DJ, Haass C (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin 1 form heterodimers and occurs as a 100–150 kDa molecular mass complex. J Biol Chem 273:3205–3211

    Article  PubMed  CAS  Google Scholar 

  • Counts SE, Lah JJ, Levey AI (2001) The regulation of presenilin 1 by nerve growth factor. J Neurochem 76:679–689

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Da Costa CA, Mattson MP, Ancolio K, Checler F (2003) The C-terminal fragment of presenilin-2 triggers p53-mediated staurosporine-induced apoptosis, a function independent of the presenilinase-derived N-terminal counterpart. J Biol Chem 278:12064–12069

    Article  Google Scholar 

  • De Strooper B, Beullens M, Contreras B, Levesque L, Craessaerts K, Cordell B, Moechars D, Bollen M, Fraser P, St. George-Hyslop P, Leuven FV (1997) Phosphorylation, subcellular localization, and membrane orientation of the Alzhermer’s disease-associated presenilins. J Biol Chem 272:3590–3598

    Article  PubMed  Google Scholar 

  • Fluhrer R, Friedlein A, Haass C, Walter J (2004) Phosphorylation of presenilin1 at the caspase recognition site regulates its proteolytic processing and the progression of apoptosis. J Biol Chem 279:1585–1593

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Thakur MK (2007a) PS1 Expression is downregulated by gonadal steroids in adult mouse brain. Neurochem Res. doi:10.1007/s11064-007-9424-8

  • Ghosh S, Thakur MK (2007b) PS2 protein expression is upregulated by sex steroids in the cerebral cortex of aging mice. Neurochem Res. doi:10.1016/j.neuint. 2007.07.015

  • Hashimoto-Gotoh T, Tsujimura A, Watanabe Y, Iwabe N, Miyata T, Tabira T (2003) A unifying model for functional difference and redundancy of presenilin-1 and -2 in cell apoptosis and differentiation. Gene 323:115–123

    Article  PubMed  CAS  Google Scholar 

  • Higashide S, Morikawa K, Okumura M, Kondo S, Ogata M, Murakami T, Yamashita A, Kanemoto S, Manabe T, Imaizumi K (2004) Identification of cis-acting element for alternative splicing of presenilin 2 exon 5 under hypoxic stress conditions. J Neurochem 91:1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T (2004). The γ-secretase complex: machinery for intramembrane proteolysis. Curr Opin Neurobiol 14:379–383

    Article  PubMed  CAS  Google Scholar 

  • Kern A, Roempp B, Prager K, Walter J, Behl C (2006) Down-regulation of endogenous amyloid precursor protein processing due to cellular aging. J Biol Chem 281:2405–2457

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Nakamura S-I, Honda T, Takashima A, Nakayama H, Ono F, Sakakibara I, Doi K, Kawamura S, Yoshikawa Y (2001) Age related changes in the localization of presenilin-1 in cynomolgus monkey brain. Brain Res 922:30–41

    Article  PubMed  CAS  Google Scholar 

  • Kovacs DM, Fausett HJ, Page KJ, Kim T-W, Mori RD (1996) Alzheimer associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 2:224–229

    Article  PubMed  CAS  Google Scholar 

  • Lee MK, Slunt HH, Martin LJ, Thinakaran G, Kim G, Gandy SE, Seeger M, Koo E, Price DL, Sisodia SS (1996). Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. J Neurosci 16:7513–7525

    PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KAB, Weber JL, Bird TD, Schellenberg GD (1995) A familial Alzheimer’s disease locus on chromosome1. Science 269:970–973

    Article  PubMed  CAS  Google Scholar 

  • Lukiw WJ, Gordon WC, Rogaev EI, Thompson H, Bazan NG (2001) Presenilin-2 (PS2) expression up-regulation in a model of retinopathy of prematurity and pathoangiogenesis. Neuroreport 12:53–57

    Article  PubMed  CAS  Google Scholar 

  • Massey LK, Mah AL, Ford DL, Miller J, Liang J, Doong H, Monteiro MJ (2004) Overexpression of ubiquilin decreases ubiquitination and degradation of presenilin proteins. J Alzheimers Dis 6:79–92

    PubMed  CAS  Google Scholar 

  • Mitsuda N, Ohkubo N, Tamatani M, Lee Y, Taniguchi M, Namikawa K, Kiyama H, Yamaguchi A, Sato N, Sakata K, Ogihara T, Vitek MP, Tohyama M (2001) Activated cAMP-response element-binding protein regulates neuronal expression of presenilin 1. J Biol Chem 276:9688–9698

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA (2003) The calpains in aging and age related diseases. Aging Res Rev 2:407–418

    Article  CAS  Google Scholar 

  • Parks AL, Curtis D (2007) Presenilin diversifies its portfolio. Trends Genet 23:140–150

    Article  PubMed  CAS  Google Scholar 

  • Ren RF, Lah JJ, Diehlmann A, Kim ES, Hawver DB, Levey AI, Beyreuther K, Flanders KC (1999) Differential effects of transforming growth factor-beta (s) and glial-cell line derived neurotrophic factor on gene expression of presenilin-1 in human post-mitotic neurons and astrocytes. Neuroscience 93:1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Renbaum P, Beeri R, Gabai E, Amiel M, Gal M, Ehrengruber MU, Levy-Lahad E (2003) Egr-1 upregulates the Alzheiemr’s disease presenilin-2 gene in neuronal cells. Gene 318:113–124

    Article  PubMed  CAS  Google Scholar 

  • Ribaut-Barassin C, Dupont JL, Haeberle AM, Bombarde G, Huber G, Moussaoui S, Mariani J, Bailly Y (2003) Alzheimer’s disease proteins in cerebellar and hippocampal synapses during postnatal development and aging of the rat. Neuroscience 120:405–423

    Article  PubMed  CAS  Google Scholar 

  • Satoh J, Kuroda Y (1999) Constitutive and cytokine—regulated expression of presenilin-1 and presenilin-2 genes in human neural cell lines. Neuropathol Appl Neurobiol 25:492–503

    Article  PubMed  CAS  Google Scholar 

  • Saura CA, Choi S, Beglopoulos V, Malkani S, Zhang D, Rao BSS, Chattarji S, Kelleher RL, Kandel ER, Duff K, Kirkwood A, Shen J (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42:23–36

    Article  PubMed  CAS  Google Scholar 

  • Scheibel A, Conrad T, Perdue S, Tomiyasu U, Wechsler A (1990) A quantitative study of dendrite complexity in selected areas of the human cerebral cortex. Brain Cognition 12:85–101

    Article  CAS  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St. George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  PubMed  CAS  Google Scholar 

  • Silhot M, Bonnichon V, Rage F, Tapia-Arancibia L (2005) Age related changes in brain derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neuroscience 132:613–624

    Article  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985). Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitski T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy S, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1996). Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17:181–190

    Article  PubMed  CAS  Google Scholar 

  • Tokuhiro S, Tomita T, Iwata H, Kosaka T, Saido TC, Maruyama K, Iwatsubo T (1998) The presenilin 1 mutation (M146 V) linked to familial Alzheimer disease attenuates the neuronal differentiation of NTera 2 cells. Biochem Biophys Res Commun 244:751–755

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Schindzielorz A, Grunberg J, Haass C (1999). Phosphorylation of presenilin 2 regulates its cleavage by caspases and retards progression of apoptosis. Proc Natl Acad Sci USA 96:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Williams B, Granholm AC, Sambamurti K (2007) Age dependent loss of NGF signaling in the rat basal forebrain is due to disrupted MAPK activation. Neurosci Lett 413:110–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Bart de Strooper (Belgium) for the generous gift of PS1 and PS2 cDNA constructs, Sam Gandy (Philadelphia, USA) for PS1 antiserum, and Helmut Jacobsen (Basel, Switzerland) for PS2 antiserum. This work was supported by a research fellowship from the University Grants commission to SG, and grants from the Department of Biotechnology (P-07/311/2004) and Department of Science and Technology (P-07/317/2005), Government of India, to MKT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Kumar Thakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, M.K., Ghosh, S. Age and Sex Dependent Alteration in Presenilin Expression in Mouse Cerebral Cortex. Cell Mol Neurobiol 27, 1059–1067 (2007). https://doi.org/10.1007/s10571-007-9214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9214-5

Keywords

Navigation