Skip to main content

Advertisement

Log in

The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

It has been more than 20 years since it was first demonstrated that endothelial cells will rapidly form capillary-like structures in vitro when plated on top of a reconstituted basement membrane extracellular matrix (BME, Matrigel, EHS matrix, etc.). Subsequently, this morphological differentiation has been demonstrated with a variety of endothelial cells; with endothelial progenitor cells; and with transformed/immortalized endothelial cells. The differentiation process involves several steps in blood vessel formation, including cell adhesion, migration, alignment, protease secretion, and tubule formation. Because the formation of vessel structures is rapid and quantifiable, endothelial cell differentiation on basement membrane has found numerous applications in assays. Such differentiation has been used (1) to study angiogenic and antiangiogenic factors, (2) to define mechanisms and pathways involved in angiogenesis, and (3) to define endothelial cell populations. Further, the endothelial cell differentiation assay has been successfully used to study processes ranging from wound repair and reproduction to development and tumor growth. The assay is easy to perform and is the most widely used in vitro angiogenesis assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kalluri R (2003) Angiogenesis: basement membrane structure, assembly and role in tumor angiogenesis. Nat Rev Cancer 3:422–433. doi:10.1038/nrc1094

    Article  PubMed  CAS  Google Scholar 

  2. Hallmann R, Horn N, Selg M, Windler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85:979–1000. doi:10.1152/physrev.00014.2004

    Article  PubMed  CAS  Google Scholar 

  3. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1597. doi:10.1083/jcb.107.4.1589

    Article  PubMed  CAS  Google Scholar 

  4. Kleinman HK, Martin GR (2005) Matrigel: basement membrane extracellular matrix with biological activity. Semin Cancer Biol 15:378–386. doi:10.1016/j.semcancer.2005.05.004

    Article  PubMed  CAS  Google Scholar 

  5. Mukai N, Akahori T, Koaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watanabe A, Kobayashi A, Yamaguchi T, Abe M, Amagasa T, Morita I (2008) A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 314:430–440. doi:10.1016/j.yexcr.2007.11.016

    Article  PubMed  CAS  Google Scholar 

  6. Bagley RG, Walter-Yohrling J, Cao X, Wber W, Simons B, Chartrand SD, Wang C, Madden SL, Teicher BA (2003) Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells. Cancer Res 63:5866–5873

    PubMed  CAS  Google Scholar 

  7. O’Connell KA, Edidin M (1990) A mouse lymphoid endothelial cell line immortalized by simian virus 40 binds lymphocytes and retains functional characteristics of normal endothelial cells. J Immunol 144:521–525

    PubMed  Google Scholar 

  8. Ades EW, Candal FG, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99:683–690. doi:10.1111/1523-1747.ep12613748

    Article  PubMed  CAS  Google Scholar 

  9. Shen JS, Meng XL, Schiffmann R, Brady RO, Kaneski CR (2007) Establishment and characterization of Fabry disease endothelial cells with an extended lifespan. Mol Genet Metab 92:137–144. doi:10.1016/j.ymgme.2007.06.003

    Article  PubMed  CAS  Google Scholar 

  10. Marenos AG, Olsen BR (2001) The role collagen-derived proteolytic fragments in angiogenesis. Matrix Biol 20:337–345. doi:10.1016/S0945-053X(01)00151-2

    Article  Google Scholar 

  11. Sanz L, Alvarez-Vallina L (2003) The extracellular matrix: a new turn of the screw for anti-angiogenic strategies. Trends Mol Med 9:256–262. doi:10.1016/S1471-4914(03)00070-4

    Article  PubMed  CAS  Google Scholar 

  12. Rundhaug JE (2007) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285. doi:10.1111/j.1582-4934.2005.tb00355.x

    Article  Google Scholar 

  13. Segev A, Nili N, Strauss BH (2004) The role of perlecan in arterial injury and angiogenesis. Cardiovasc Res 63:603–610. doi:10.1016/j.cardiores.2004.03.028

    Article  PubMed  CAS  Google Scholar 

  14. Scheele S, Nystrom A, Durbcej M, Talts JF, Ekblom M, Ekblom P (2007) Laminin isoforms in development and disease. J Mol Med 85:825–836. doi:10.1007/s00109-007-0182-5

    Article  PubMed  CAS  Google Scholar 

  15. Miner JH (2008) Laminins and their role in mammals. Microsc Res Tech 71:349–356. doi:10.1002/jemt.20563

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki N, Yokohama F, Nomizu M (2005) Functional sites in the laminin alpha chains. Connect Tissue Res 46:142–152. doi:10.1080/03008200591008527

    Article  PubMed  CAS  Google Scholar 

  17. de Vega S, Iwamoto T, Yamada Y (2009) Fibulins: multiple roles in matrix structures and tissue functions. Cell Mol Life Sci. doi:10.1007/s00018-009-8632-6

    PubMed  Google Scholar 

  18. Bonnefoy A, Moura R, Hoylaerts MF (2008) The evolving role of thrombospondin-1 in hemostasis and vascular biology. Cell Mol Life Sci 65:713–727. doi:10.1007/s00018-007-7487-y

    Article  PubMed  CAS  Google Scholar 

  19. Podhajcer OL, Benedetti LG, Girotti MR, Prada F, Salvatierra E, Liera AS (2008) The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 27:691–705. doi:10.1007/s10555-008-9146-7

    Article  PubMed  CAS  Google Scholar 

  20. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318. doi:10.1021/bi00350a005

    Article  PubMed  CAS  Google Scholar 

  21. Taub M, Wang Y, Szcesney TM, Kleinman HK, Martin GR (1990) Epidermal growth factor or transforming growth factor α is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proc Natl Acad Sci USA 87:4002–4006. doi:10.1073/pnas.87.10.4002

    Article  PubMed  CAS  Google Scholar 

  22. Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH (1992) Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202:1–8. doi:10.1016/0014-4827(92)90397-Q

    Article  PubMed  CAS  Google Scholar 

  23. Auerbach R, Lewis R, Shinners B, Kribai L, Akhtar N (2003) Angiogenesis assays: a critical overview. Clin Chem 49:32–40. doi:10.1373/49.1.32

    Article  PubMed  CAS  Google Scholar 

  24. Kleinman HK, Malinda KM, Gho YS, Ponce ML (2000) In vitro and in vivo models of angiogenesis. In: Rubyani GM (ed) Angiogenesis in health and disease: from basic to clinical applications. Marcel Dekker, Inc., New York, pp 291–299

    Google Scholar 

  25. Browing AC, Dua HS, Amaokau WM (2008) The effect of growth factors on the proliferation and in vitro angiogenesis of human macular inner choroidal endothelial cells. Br J Ophthalmol 92:1003–1008. doi:10.1136/bjo.2007.127670

    Article  Google Scholar 

  26. Benelli R, Albini A (1999) In vitro models of angiogenesis: the use of Matrigel. Int J Biol Markers 14:243–246

    PubMed  CAS  Google Scholar 

  27. Albini A, Benelli R (2007) The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat Protoc 2:504–511. doi:10.1038/nprot.2006.466

    Article  PubMed  CAS  Google Scholar 

  28. Koh W, Stratman AN, Sacharidou A, Davis GE (2008) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101. doi:10.1016/S0076-6879(08)02005-3

    Article  PubMed  CAS  Google Scholar 

  29. Irulea-Arispe ML, Hasselaar P, Sage H (1991) Differential expression of extracellular proteins in correlated with angiogenesis in vitro. Lab Invest 64:174–186

    Google Scholar 

  30. Grant DS, Kinsella JL, Kibbey MC, LaFlamme S, Burbelo PD, Goldstein AL, Kleinman HK (1995) Matrigel induces thymosin beta4 gene in differentiating endothelial cells. J Cell Sci 108:3685–3694

    PubMed  CAS  Google Scholar 

  31. Grant DS, Tashiro K, Sequi-Real B, Yamada Y, Martin GR, Kleinman HK (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures. Cell 58:933–943. doi:10.1016/0092-8674(89)90945-8

    Article  PubMed  CAS  Google Scholar 

  32. Grant DS, Lelkes PI, Fukuda K, Kleinman HK (1991) Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro 27:327–335

    Google Scholar 

  33. Elkin M, Miao HQ, Nagler A, Aingorn E, Reich R, Hemo I, Dou HL, Pines M, Vlodavsky I (2000) Halofuginone: a potent inhibitor of critical steps in angiogenesis progression. FASEB J 14:2477–2485

    Article  PubMed  CAS  Google Scholar 

  34. Haralabopoulos GC, Grant DS, Kleinman HK, Lelkes PI, Papaioannou SP, Maragoudakis ME (1994) Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Lab Invest 71:575–582

    PubMed  CAS  Google Scholar 

  35. Grove AD, Prabhu VV, Young BL, Lee FC, Kulpa V, Munson PJ, Kohn EC (2002) Both protein activation and gene expression are involved in early vascular tube formation in vitro. Clin Cancer Res 8:3019–3026

    PubMed  CAS  Google Scholar 

  36. Glesne DA, Shang W, Mandava S, Ursos L, Buell ME, Makowski L, Rodi DJ (2006) Subtractive transcriptomics: establishing polarity drives in vitro human endothelial morphogenesis. Cancer Res 66:4030–4040

    Article  PubMed  CAS  Google Scholar 

  37. Fukushima K, Murata M, Hachisuga M, Tsukimori K, Seki H, Takeda S, Kato K, Wake N (2008) Gene expression profiles by microarray analysis during matrigel-induced tube formation in a human extravillous trophoblast cell line: comparison with endothelial cells. Placenta 29:898–904

    Article  PubMed  CAS  Google Scholar 

  38. Kinsella JL, Grant DS, Weeks BS, Kleinman HK (1992) Protein kinase C regulates endothelial cell tube formation on basement membrane matrix, Matrigel. Exp Cell Res 199:56–62

    Article  PubMed  CAS  Google Scholar 

  39. Cid MC, Grant DS, Hoffman GS, Auerbach R, Fauci AS, Kleinman HK (1993) Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Invest 91:977–985

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Dr. George R. Martin for careful reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hynda K. Kleinman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnaoutova, I., George, J., Kleinman, H.K. et al. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12, 267–274 (2009). https://doi.org/10.1007/s10456-009-9146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-009-9146-4

Keywords

Navigation