Skip to main content
Log in

Pyrethroid action on calcium channels: neurotoxicological implications

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Actions of cismethrin versus deltamethrin were compared using two functional attributes of rat brain synaptosomes. Both pyrethroids increased calcium influx but only deltamethrin increased Ca2+-dependent neurotransmitter release following K+-stimulated depolarization. The action of deltamethrin was stereospecific, concentration-dependent, and blocked by ω-conotoxin GVIA. These findings delineate a separate action for deltamethrin and implicate N-type rat brain Cav2.2 voltage-sensitive calcium channels (VSCC) as target sites that are consistent with the in vivo release of neurotransmitter caused by deltamethrin. Deltamethrin (10−7 M) reduced the peak current (approx. −47%) of heterologously expressed wild type Cav2.2 in a stereospecific manner. Mutation of threonine 422 to glutamic acid (T422E) in the α1-subunit results in a channel that functions as if it were permanently phosphorylated. Deltamethrin now increased peak current (approx. +49%) of T422E Cav2.2 in a stereospecific manner. Collectively, these results substantiate that Cav2.2 is directly modified by deltamethrin but the resulting perturbation is dependent upon the phosphorylation state of Cav2.2. Our findings may provide a partial explanation for the different toxic syndromes produced by these structurally-distinct pyrethroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldridge WN, Clothier B, Froshaw P, Johnson MK, Parker VH, Price RJ, Skilleter DN, Verscholyle RD, Stevens C (1978) The effect of DDT and the pyrethroids cismethrin and decamethrin on the acetyl choline and cyclic nucleotide content of rat brain. Biochem Pharmacol 27:1703–1706

    Article  PubMed  CAS  Google Scholar 

  • Blaustein MP, Goldring JM (1975) Membrane potentials in pinched-off presynaptic nerve terminals monitored with fluorescent probe: Evidence that synaptosomes have potassium diffusion potentials. J Physiol 247:589–615

    PubMed  CAS  Google Scholar 

  • Bloomquist JR, Soderlund DM (1988) Pyrethroid insecticides and DDT modify alkaloid-dependent sodium channel activation and its enhancement by sea anemone toxin. Mol Pharmacol 33:543–550

    PubMed  CAS  Google Scholar 

  • Brooks MW, Clark JM (1987) Enhancement of norepinephrine release from rat brain synaptosomes by alpha-cyano pyrethroids. Pestic Biochem Physiol 28:127–139

    Article  CAS  Google Scholar 

  • Catterall WA (1997) Modulation of sodium and calcium channels by protein phosphorylation and G proteins. Adv Second Messenger Phosphoprotein Res 31:159–181

    PubMed  CAS  Google Scholar 

  • Catterall WA (1998) Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24:307–323

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1999) Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann N Y Acad Sci 868:144–159

    Article  PubMed  CAS  Google Scholar 

  • Clark JM (1994) Effects and mechanisms of action of pyrethrin and pyrethroid insecticides. In: LWCaRS Dyer (eds) Handbook of neurotoxicology. Marcel Dekker Inc., New York, Basel, Hong Kong, pp 511–46

  • Clark JM, Brooks MW (1989a) Neurotoxicology of pyrethroids: single or multiple mechanisms of action? J Environ Toxicol Chem 8:361–372

    CAS  Google Scholar 

  • Clark JM, Brooks MW (1989b) Role of ion channels and intraterminal calcium homeostasis in the action of deltamethrin at presynaptic nerve terminals. Biochem Pharmacol 38:2233–2245

    Article  CAS  Google Scholar 

  • Clark JM, Marion JR (1990) Enhanced neurotransmitter release by pyrethroid insecticides. In: Narahashi T, Chambers JE, Chambers H (eds) Insecticidal action: from molecule to organism. Plenum Press, New York NY, pp 139–168

    Google Scholar 

  • Clark JM, Edman SJ, Nagy SR, Conhoto A, Hecht F, Van Houten J (1995) Action of DDT and pyrethroids on the calcium channel in Paramecium tetraurelia. In: Clark JM (eds) Molecular action of insecticides on ion channels. American Chemical Society, Washington DC, pp 173–190

    Google Scholar 

  • Cooper CB, Arnot MI, Feng ZP, Jarvis SE, Hamid J, Zamponi GW (2000) Cross-talk between G-protein and protein kinase C modulation of N-type calcium channels is dependent on the G-protein beta subunit isoform. J Biol Chem 275:40777–40781

    Article  PubMed  CAS  Google Scholar 

  • De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP (1997) Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 385:446–450

    Article  PubMed  Google Scholar 

  • Doherty JD, Nishimura K, Kurihara N, Fujita T (1987) Promotion of norepinephrine released and inhibition of calcium uptake by pyrethroids in rat brain synaptosomes. Pestic Biochem Physiol 29:187–196

    Article  CAS  Google Scholar 

  • Duce I, Warburton S, Khan T, Thompson A, Green C (1999a) Insect calcium channels. In Neurotox 98. SCI Oxford, UK

    Google Scholar 

  • Duce IR, Khan TR, Green AC, Thompson AJ, Warburton SPM, Wong J (1999b) Calcium channels in insects. In: Beadle DJ (ed) Progress in Neuropharmacology and neurotoxicology of pesticides and drugs. The Royal Society of Chemistry Oxford, UK pp 56–66

    Google Scholar 

  • Eells JT, Dubocovich ML (1988) Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices. J Pharmacol Exp Ther 246:514–521

    PubMed  CAS  Google Scholar 

  • Ehrlich BE, Jacobson AR, Hinrichsen R, Sayre LM, Forte MA (1988) Paramecium calcium channels are blocked by a family of calmodulin antagonists. Proc Natl Acad Sci USA 85:5718–5722

    Article  PubMed  CAS  Google Scholar 

  • Enan E, Matsumura F (1991) Stimulation of protein phosphorylation in intact rat brain synaptosomes by a pyrethroid insecticide, deltamethrin. Pestic Biochem Physiol 39:182–195

    Article  CAS  Google Scholar 

  • Enan E, Matsumura F (1993) Activation of phosphoinositide/protein kinase C pathway in rat brain tissue by pyrethroids. Biochem Pharmacol 45:703–710

    Article  PubMed  CAS  Google Scholar 

  • Fink K, Meder WP, Clusmann H, Gothert M (2002) Ca2+ entry via P/Q-type Ca2+ channels and the Na+/Ca2+ exchanger in rat and human neocortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol 366:458–463

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Guo-lei F, Marion JR, Clark JM (1992) Suppression of pyrethroid-dependent neurotransmitter release from synaptosomes of knockdown-resistant house flies under pulsed depolarization conditions during continuous perfusion. Pestic Biochem Physiol 42:64–77

    Article  Google Scholar 

  • Hamid J, Nelson D, Spaetgens R, Dubel SJ, Snutch TP, Zamponi GW (1999) Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J Biol Chem 274:6195–6202

    Article  PubMed  CAS  Google Scholar 

  • Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409:479–484

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand ME, McRory JE, Snutch TP, Stea A (2004) Mammalian voltage-gated calcium channels are potently blocked by the pyrethroid insecticide allethrin. J Pharmacol Exp Ther 308:805–813

    Article  PubMed  CAS  Google Scholar 

  • Hossain MM, Suzuki T, Sato I, Takewaki T, Suzuki K, Kobayashi H (2004) The modulatory effect of pyrethroids on acetylcholine release in the hippocampus of freely moving rats. Neurotoxicology 25:825–833

    Article  PubMed  CAS  Google Scholar 

  • Iredale PA, Dickenson JM (1995) Measurement of intracellular free calcium ion concentration in cell populations using fura-2. Methods Mol Biol 41:203–213

    PubMed  CAS  Google Scholar 

  • Ishikawa Y, Charalambous P, Matsumura F (1989) Modification by pyrethroids and DDT of phosphorylation activities of rat brain sodium channel. Biochem Pharmacol 38:2449–2457

    Article  PubMed  CAS  Google Scholar 

  • Kanemoto Y, Enan EE, Matsumura F, Miyazawa M (1992) Time-dependent changes in protein phosphorylation patterns in rat brain synaptosomes caused by deltamethrin. Pestic Sci 34:281–290

    Article  CAS  Google Scholar 

  • Katz B, Miledi R (1967) The release of acetylcholine from nerve endings by graded electric pulses. Proc R Soc Lond B Biol Sci 167:23–38

    Article  PubMed  CAS  Google Scholar 

  • Koenig JH, Yamaoka K, Ikeda K (1998) Omega images at the active zone may be endocytotic rather than exocytotic: implications for the vesicle hypothesis of transmitter release. Proc Natl Acad Sci USA 95:12677–12682

    Article  PubMed  CAS  Google Scholar 

  • Li D, Wang F, Lai M, Chen Y, Zhang JF (2005) A protein phosphatase 2calpha-Ca2+ channel complex for dephosphorylation of neuronal Ca2+ channels phosphorylated by protein kinase C. J Neurosci 25:1914–1923

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Haus S, Edgerton J, Lipscombe D (1997) Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain. Neuron 18:153–166

    Article  PubMed  CAS  Google Scholar 

  • Matsumura F, Clark JM, Matsumura FM (1989) Deltamethrin causes changes in protein phosphorylation activities associated with post-depolarization events in the synaptosomes from the optic lobe of squid, Loligo pealei. Comp Biochem Physiol C 94:381–390

    Article  PubMed  CAS  Google Scholar 

  • Meder W, Fink K, Zentner J, Gothert M (1999) Calcium channels involved in K+- and veratridine-induced increase of cytosolic calcium concentration in human cerebral cortical synaptosomes. J Pharmacol Exp Ther 290:1126–1131

    PubMed  CAS  Google Scholar 

  • Miyazawa M, Matsumura F (1990) Effects of deltamethrin on protein phosphorylation and dephosphorylation process in the nerve fibers of the American lobster, Homarus americanus L. Pestic Biochem and Physiol 32:147–155

    Article  Google Scholar 

  • Narahashi T (1992) Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci 13:236–241

    Article  PubMed  CAS  Google Scholar 

  • Narahashi T, Tsunoo A, Yoshii M (1987) Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol (Lond) 383:231–249

    CAS  Google Scholar 

  • Nicholls DG, Sihra TS, Sanchez-Prieto J (1987) Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J Neurochem 49:50–57

    Article  PubMed  CAS  Google Scholar 

  • Nichols RA, Haycock JW, Wang JK, Greengard P (1987) Phorbol ester enhancement of neurotransmitter release from rat brain synaptosomes. J Neurochem 48:615–621

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RA, Wilson RC, Potter C, Black MH (1987) Pyrethroid- and DDT-evoked release of GABA from the nervous system in vitro. In: Miyamoto J, Kearney PC (eds) Pesticide chemistry: human welfare and the environment, Pergamon. Oxford, UK, pp 75–78

    Google Scholar 

  • Osborne MP, Pepper DR, Hein PJD (1995) Site-insensitive mechanisms in knockdown resistant strains of housefly larva, Musca domestica In: Clark JM (eds) Molecular action of insecticides on ion channels. American Chemical Society, Washington DC, pp 128–148

    Google Scholar 

  • Rossie S (1999) Regulation of voltage-sensitive sodium and calcium channels by phosphorylation. In: Armstrong DL, Rossie S (eds) Advances in second messenger and phosphoprotein research. Academic, San Diego, pp 23–48

    Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Soderlund DM, Bloomquist JR (1989) Neurotoxic actions of pyrethroid insecticides. Ann Rev Entomol 34:77–96

    Article  CAS  Google Scholar 

  • Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59

    Article  PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S (1992) Xenopus oocyte microinjection: from gene to protein. Methods Enzymol 207:225–265

    Article  PubMed  CAS  Google Scholar 

  • Stea A, Soong TW, Snutch TP (1995) Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 15:929–940

    Article  PubMed  CAS  Google Scholar 

  • Symington SB, Clark JM (2005) Action of deltamethrin on voltage-sensitive calcium channels in rat brain. Pestic Biochem Physiol 82:1–15

    Article  CAS  Google Scholar 

  • Symington SB, Zhang A, Clark JM (1999a) The action of pyrethroids on the voltage-sensitive calcium channel of Paramecium tetraurelia. Pestic Sci 55:1035–1037

    Article  CAS  Google Scholar 

  • Symington SB, Zhang A, Karstens W, Van Houten J, Clark JM (1999b) Characterization of pyrethroid action on ciliary calcium channels in Paramecium tetraurelia. Pestic Biochem Physiol 65:181–193

    Article  CAS  Google Scholar 

  • Symington SB, Frisbie RK, Lu KD, Clark JM (2007a) Action of cismethrin and deltamethrin on functional attributes of isolated presynaptic nerve terminals from rat brain. Pestic Biochem Physiol (in press)

  • Symington SB, Frisbie RK, Kim H-J, Clark JM (2007b) Mutation of threonine 422 to glutamic acid mimics the phosphorylation state and alters the action of deltamethrin on Cav2.2. Pestic Biochem Physiol (in press)

  • Trainer VL, McPhee JC, Boutelet-Bochan H, Baker C, Scheuer T, Babin D, Demoute JP, Guedin D, Catterall WA (1997) High affinity binding of pyrethroids to the alpha subunit of brain sodium channels. Mol Pharmacol 51:651–657

    PubMed  CAS  Google Scholar 

  • Turner TJ, Adams ME, Dunlap K (1993) Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release. Proc Natl Acad Sci USA 90:9518–9522

    Article  PubMed  CAS  Google Scholar 

  • Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF (2000) CaV2.2 and CaV2.3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem 275:21210–21217

    Article  PubMed  CAS  Google Scholar 

  • Yoshii M, Tsunoo A, Narahashi T (1985) Effects of pyrethroids and veratridine on two types of calcium channels in neuroblastoma cells. Presented at Society for Neuroscience, Dallas

    Google Scholar 

  • Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 385:442–446

    Article  PubMed  CAS  Google Scholar 

  • Zhang A. (1996) Presynaptic actions of insecticidal dihydropyrazoles in mammalian brain. Dissertation thesis. Simon Frazier University, Vancouver. pp 139

  • Zhang A, Nicholson RA (1994) RH-3421, a potent dihydropyrazole insecticide, inhibits depolarization- stimulated rises in free [Ca2+] and 45Ca2+ uptake in mammalian synaptosomes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 108:307–310

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Diana Lipscombe (Brown University, Providence, RI) for providing us the Cav2.2 subunits (α−1B-d and β3). We thank the Pyrethroid Working Group (PWG: Adventis CropSci., Bayer Corp., DuPont Ag. Prod., FMC Corp., Valent USA Corp., and Syngenta) for providing the pyrethroids used in this study. Partial support For S. Symington was provided by RI-INBRE (NIH/NCRR. #P20PR016457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marshall Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, J.M., Symington, S.B. Pyrethroid action on calcium channels: neurotoxicological implications. Invert Neurosci 7, 3–16 (2007). https://doi.org/10.1007/s10158-006-0038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-006-0038-7

Keywords

Navigation