Skip to main content
Log in

Effect of partial atomic charges on the calculated free energy of solvation of poly(vinyl alcohol) in selected solvents

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

It is well-known that properties of poly(vinyl alcohol) (PVA) in the pure and solution states depend largely on the hydrogen bonding networks formed. In the context of molecular simulation, such networks are handled through the Coulombic interactions. Therefore, a good set of partial atom charges (PACs) for simulations involving PVA is highly desirable. In this work, we calculated the PACs for PVA using a few commonly used population analysis schemes with a hope to identify an accurate set of PACs for PVA monomers. To evaluate the quality of the calculated parameters, we have benchmarked their predictions for free energy of solvation (FES) in selected solvents by molecular dynamics simulations against the ab initio calculated values. Selected solvents were water, ethanol and benzene as they covered a range of size and polarity. Also, PVA with different tacticities were used to capture their effect on the calculated FESs. Based on our results, neither PACs nor FESs are affected by the chain tacticity. While PACs predicted by the Merz-Singh-Kollman scheme were close to original values in the OPLS-AA force field in way that no significant difference in properties of pure PVA was observed, free energy of solvation calculated using such PACs showed greater agreement with ab initio calculated values than those calculated by OPLS-AA (and all other schemes used in this work) in all three solvents considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pritchard J (1970) Poly(vinyl Alcohol): basic properties and uses(polymer monographs, vol 4. Routledge

  2. Muller-Plathe F (1998) J Membr Sci 141:147

    Article  CAS  Google Scholar 

  3. Zhang QG, Liu QL, Chen Y, Wu JY, Zhu AM (2009) Chem Eng Sci 64:334

    Article  CAS  Google Scholar 

  4. Jang J, Lee DK (2003) Polymer 44(26):8139

    Article  CAS  Google Scholar 

  5. Karlsson G, Gedde U, Hedenqvist M (2004) Polymer 45(11):3893

    Article  CAS  Google Scholar 

  6. Patel P, Rodriguez F (1979) J Appl Polym Sci 23:2335

    Article  CAS  Google Scholar 

  7. Muller-Plathe F (1998) J Chem Phys 108(19):8252

    Article  CAS  Google Scholar 

  8. Belmares M, Blanco M, Goddard Wa, Ross RB, Caldwell G, Chou SH, Pham J, Olofson PM, Thomas C (2004) J Comput Chem 25(15):1814

    Article  CAS  Google Scholar 

  9. Pricl S, Fermeglia M (2003) Chem Eng Commun 190:1267

    Article  CAS  Google Scholar 

  10. Caddeo C, Mattoni A (2013) Macromolecules 46(19):8003

    Article  CAS  Google Scholar 

  11. Zhang QG, Liu Q L, Lin J, Chen JH, Zhu AM (2007) J Mater Chem 17(46):4889

    Article  CAS  Google Scholar 

  12. Durkee JB (2004) Met Finish 102(4):42

    Article  Google Scholar 

  13. Jawalkar SS, Adoor SG, Sairam M, Nadagouda MN, Aminabhavi TM (2005) J Phys Chem B 109(32):15611

    Article  CAS  Google Scholar 

  14. Patel S, Lavasanifar A, Choi P (2008) Biomacromolecules 9(11):3014

    Article  CAS  Google Scholar 

  15. Jawalkar SS, Raju KVSN, Halligudi SB, Sairam M, Aminabhavi TM (2007) J Phys Chem B 111:2431

    Article  CAS  Google Scholar 

  16. Assendert HE, Windle AH (1998) Polymer 39(18):4295

    Article  Google Scholar 

  17. Chiessi E, Cavalieri F, Paradossi G (2007) J Phys Chem B 111(11):2820

    Article  CAS  Google Scholar 

  18. Hassan C, Peppas N (2000) Adv Polym Sci 153:37

    Article  CAS  Google Scholar 

  19. Jawalkar SS, Aminabhavi TM (2006) Polymer 47(23):8061

    Article  CAS  Google Scholar 

  20. Jeck S, Scharfer P, Kind M (2012) J Membrane Sci 417–418:154

    Article  Google Scholar 

  21. Matyjaszewski K (2002) Encycl Polym Sci Technol 8:399

    Google Scholar 

  22. Muller-Plathe F, van Gunsteren W F (1997) Polymer 38(9):2259

    Article  CAS  Google Scholar 

  23. Park JS, Park JW, Ruckenstein E (2001) J Appl Polym Sci 82:1816

    Article  CAS  Google Scholar 

  24. Rault J, Gref R, Ping ZH, Nguyen QT, Neel J (1995) Polymer 36(8):1655

    Article  CAS  Google Scholar 

  25. Rossinsky E, Tarmyshov KB, Bohm MC, Muller-Plathe F (2009). Macromol Theory Simul 18(9):545

    Article  CAS  Google Scholar 

  26. Suchiya YT, Oshii NY, Watsubo TI (2004) Japan J Appl Phys 43(8A):5676

    Article  Google Scholar 

  27. Tesei G, Paradossi G, Chiessi E (2012) J Phys Chem B 116(33):10008

    Article  CAS  Google Scholar 

  28. Watanabe H, Koyama R, Hiroshi N, Nishioka A (1962) J Polym Sci 62(174):77

    Article  Google Scholar 

  29. Takigawa T, Kashihara H, Urayama K, Masuda T (1992) Polymer 33(11):2334

    Article  CAS  Google Scholar 

  30. Chen Nx, Zhang Jh (2010) Chin J Polym Sci 28(6):903

    Article  CAS  Google Scholar 

  31. Jorgensen WL, Maxwell DS, Tirado-rives J (1996) J Amer Chem Soc 118:11225

    Article  CAS  Google Scholar 

  32. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36(3):354

    Article  Google Scholar 

  33. Weiner SJ, Kollman Pa, Nguyen DT, Case Da (1986) J Comput Chem 7(2):230

    Article  CAS  Google Scholar 

  34. Basma M, Sundara S, Calgan D, Vernali T, Woods RJ (2001) J Comput Chem 22(11):1125

    Article  CAS  Google Scholar 

  35. Sigfridsson E, Ryde U (1998) J Comput Chem 19(4):377

    Article  CAS  Google Scholar 

  36. Noorjahan A, Choi P (2013) Polymer 54(16):4212

    Article  CAS  Google Scholar 

  37. Flory PJ, Leutner FS (1948) J Polym Sci 3(6):880

    Article  CAS  Google Scholar 

  38. Accelry Inc. Materials Studio4.0 (2005)

  39. Genheden S, Soderhjelm P, Ryde U (2012) Int J Quant Chem 112:1768

    Article  CAS  Google Scholar 

  40. Soderhjelm P, Ryde U (2008) J Comput Chem 30:750

    Article  Google Scholar 

  41. Frisch GESMJ, Trucks GW, Schlegel HB, Robb BMMA, Cheeseman JR, Scalmani G, Barone V, Petersson HPHGA, Nakatsuji H, Caricato M, Li X, Izmaylov MHAF, Bloino J, Zheng G, Sonnenberg JL, Ehara TNM, Toyota K, Fukuda R, Hasegawa J, Ishida M, Honda JY, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta EBJE, Ogliaro F, Bearpark M, Heyd JJ, Kudin JNKN, Staroverov VN, Keith T, Kobayashi R, Raghavachari JTK, Rendell A, Burant JC, Iyengar SS, Cossi JBCM, Rega N, Millam JM, Klene M, Knox JE, Bakken RESV, Adamo C, Jaramillo J, Gomperts R, Yazyev JWOO, Austin AJ, Cammi R, Pomelli C, Martin GAVRL, Morokuma K, Zakrzewski VG, Salvador ADDP, Dannenberg JJ, Dapprich S, Farkas JCO, Foresman JB, Ortiz JV, Fox DJ Gaussian 09 Revision C.01

  42. Ruzsinszky A, Alsenoy CV (2002) J Phys Chem A 106:12139

    Article  CAS  Google Scholar 

  43. Mulliken RS (1955) J Chem Phys 23(10):1833

    Article  CAS  Google Scholar 

  44. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83(2):735

    Article  CAS  Google Scholar 

  45. Singh UC, Kollman Pa (1984) J Comput Chem 5(2):129

    Article  CAS  Google Scholar 

  46. Besler BH, Merz KM, Kollman Pa (1990) J Comput Chem 11(4):431

    Article  CAS  Google Scholar 

  47. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  48. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) J Chem Theory Comput 8(2):527

    Article  CAS  Google Scholar 

  49. Ritchie JP, Bachrach SM (1987) J Comput Chem 8(4):499

    Article  CAS  Google Scholar 

  50. Ritchie JP (1985) J Amer Chem Soc 107(6):1829

    Article  CAS  Google Scholar 

  51. Hirshfeld FL (1977) Theoretica Chimica Acta 44(2):129

    Article  CAS  Google Scholar 

  52. Luque FJ, López JM, Orozco M (2000) Theor Chem Accounts: Theory, Computation, Model (Theoretica Chimica Acta) 103(3–4):343

    CAS  Google Scholar 

  53. Wen M, Jiang J, Wang ZX, Wu C (2014) Theor Chem Accounts 133(5):1471

    Article  Google Scholar 

  54. Hess B, Lutzner C, David. vdS, Lindhal E (2008) J Chem Theory Comput 4:435

    Article  CAS  Google Scholar 

  55. Spoel DV, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701

    Article  Google Scholar 

  56. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  57. Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306

    CAS  Google Scholar 

  58. Berendsen H, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43

    Article  CAS  Google Scholar 

  59. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  60. Abascal JLF, Vega C (2005) J Chem Phys 123:234505

    Article  CAS  Google Scholar 

  61. Berendsen HJC, Postma JPM, van Gunsteren J, Hermans WF (1981) In: Pullman B (ed) Intermolecular forces. D Reidel Publishing Company, Dordrecht, pp 331–342

  62. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327

    Article  CAS  Google Scholar 

  63. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola a, Haak JR (1984) J Chem Phys 81(8):3684

    Article  CAS  Google Scholar 

  64. Klimovich PV, Mobley DL (2010) J Comput-Aided Mol Des 24(4):307

    Article  CAS  Google Scholar 

  65. Jämbeck JPM, Lyubartsev AP (2013) J Phys Chem Lett 4(11):1781

    Article  Google Scholar 

  66. Hockney RW, Goel SP, Eastwood JW (1974) J Comput Phys 14:148

    Article  Google Scholar 

  67. Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  68. Abraham M, van der Spoel D, Lindahl E, Hess B (2014) GROMACS User Manual version 5.0

  69. Shirts MR, Chodera JD (2008) J Chem Phys 129(12):124105

    Article  Google Scholar 

  70. Jambeck JPM, Mocci F, Lyubartsev AP, Laaksonen A (2013) J Comput Chem 34(3):187

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Advanced Foods and Materials Network is gratefully acknowledged. This research has been enabled by the use of WestGrid computing resources, which are funded in part by the Canada Foundation for Innovation, Alberta Innovation and Science, BC Advanced Education, and the participating research institutions. WestGrid equipment is provided by IBM, Hewlett Packard and SGI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Choi.

Appendices

Appendix A: PAC calculation

Table 3 shows the deviation of average PACs calculated in the solvated state using different methods relative to the same PACs calculated in vacuum for optimized structures. As can be seen, the sensitivity of the AIM results to solvent is quiet high relative to other methods.

Table 3 Percentage of relative changes in calculated PACs in the solvated state relative to those of optimized geometries in vacuum

Figure 6 compares the dihedral angle distributions for different PAC sets. As we expected, the quality of results are in accordance with calculated densities.

Fig. 6
figure 6

Comparison of back-bone carbon atoms dihedral angle distribution of an isotactic PVA chain with 400 monomers calculated with different PAC sets. Results were averaged over all possible dihedral angles in a 5 ns simulation on a well relaxed chain in a NPT ensemble at 300 K and 1 bar. Note that the density of the data has been reduced for better resolution

Table 4 shows the standard deviation of the PACs reported in Table 1.

Table 4 Standard error (%) for calculated PACs

Appendix B: Free energy of solvation

Figure 7 shows an example of Hamiltonian change as the lambda changes in the slow-growth method. We are aware of the fact that by increasing the number of points we are able to obtain smoother curves (especially when vdW interactions start to vanish), but our results indicate that change in the final calculated FES would be minor.

Fig. 7
figure 7

A typical graph of changes in free energy during the slow-growth method. Data is related to solvation of one of the isotactic PVA oligomers

Figure 8 shows the probability distribution for the ab initio calculated FES for oligomers of PVA in different solvents. As can be seen, these values are highly conformation dependent and are slightly different for different tacticities.

Fig. 8
figure 8

Probability distribution of ab initio calculated free energy of solvation

Table 5 compares the ab initio calculated FES as averaged by the Boltzmann factor with regular averaged values.

Table 5 Average values for ab initio calculated FES

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorjahan, A., Choi, P. Effect of partial atomic charges on the calculated free energy of solvation of poly(vinyl alcohol) in selected solvents. J Mol Model 21, 58 (2015). https://doi.org/10.1007/s00894-014-2554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2554-4

Keywords

Navigation