Skip to main content

Advertisement

Log in

Glomerular pathology in Alport syndrome: a molecular perspective

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

We have known for some time that mutations in the genes encoding 3 of the 6 type IV collagen chains are the underlying defect responsible for both X-linked (where the COL4A5 gene is involved) and autosomal (where either COL4A3 or COL4A4 genes are involved) Alport syndrome. The result of these mutations is the absence of the sub-epithelial network of all three chains in the glomerular basement membrane (GBM), resulting, at maturity, in a type IV collagen GBM network comprising only α1(IV) and α2(IV) chains. The altered GBM functions adequately in early life. Eventually, there is onset of proteinuria associated with the classic and progressive irregular thickening, thinning, and splitting of the GBM, which culminates in end-stage renal failure. We have learned much about the molecular events associated with disease onset and progression through the study of animal models for Alport syndrome, and have identified some potential therapeutic approaches that may serve to delay the onset or slow the progression of the disease. This review focuses on where we are in our understanding of the disease, where we need to go to understand the molecular triggers that set the process in motion, and what emergent therapeutic approaches show promise for ameliorating disease progression in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Spear GS, Slusser RJ (1972) Alport’s syndrome emphasizing electron microscopic studies of the glomerulus. Am J Pathol 2:213–224

    Google Scholar 

  2. Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR, Gerken SC, Gregory MC, Skolnick MH, Atkin CL, Tryggvason K (1990) Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 4960:1224–1227

    Article  Google Scholar 

  3. Lemmink HH, Mochizuki T, van den Heuvel LP, Schröder CH, Barrientos A, Monnens LA, van Oost BA, Brunner HG, Reeders ST, Smeets HJ (1994) Mutations in the type IV collagen alpha 3 (COL4A3) gene in autosomal recessive Alport syndrome. Hum Mol Genet 8:1269–1273

    Article  Google Scholar 

  4. Mochizuki T, Lemmink HH, Mariyama M, Antignac C, Gubler MC, Pirson Y, Verellen-Dumoulin C, Chan B, Schröder CH, Smeets HJ (1994) Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat Genet 1:77–81

    Article  Google Scholar 

  5. Gunwar S, Ballester F, Noelken ME, Sado Y, Ninomiya Y, Hudson BG (1998) Glomerular basement membrane identification of a novel disulfide-cross-linked network of alpha3, alpha4, and alpha5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J Biol Chem 15:8767–8775

    Article  Google Scholar 

  6. Zeisberg M, Khurana M, Rao VH, Cosgrove D, Rougier JP, Werner MC, Shield CF 3rd, Werb Z, Kalluri R (2006) Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease. PLoS Med 4:e100

    Article  Google Scholar 

  7. Rao VH, Meehan DT, Delimont D, Nakajima M, Wada T, Gratton MA, Cosgrove D (2006) Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. Am J Pathol 1:32–46

    Article  Google Scholar 

  8. Meehan DT, Delimont D, Cheung L, Zallocchi M, Sansom SC, Holzclaw JD, Rao V, Cosgrove D (2009) Biomechanical strain causes maladaptive gene regulation, contributing to Alport glomerular disease. Kidney Int 9:968–976

    Article  Google Scholar 

  9. Cosgrove D, Rodgers K, Meehan D, Miller C, Bovard K, Gilroy A, Gardner H, Kotelianski V, Gotwals P, Amatucci A, Kalluri R (2000) Integrin alpha1beta1 and transforming growth factor-beta1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am J Pathol 5:1649–1659

    Article  Google Scholar 

  10. Kashtan CE, Kim Y, Lees GE, Thorner PS, Virtanen I, Miner JH (2001) Abnormal glomerular basement membrane laminins in murine, canine, and human Alport syndrome: aberrant laminin alpha2 deposition is species independent. J Am Soc Nephrol 2:252–260

    Google Scholar 

  11. Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, Copeland NG, Sanes JR (1997) The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8–11, and cloning of a novel alpha3 isoform. J Cell Biol 3:685–701

    Article  Google Scholar 

  12. Abrahamson DR, Prettyman AC, Robert B, St John PL (2003) Laminin-1 reexpression in Alport mouse glomerular basement membranes. Kidney Int 3:826–834

    Article  Google Scholar 

  13. Abrahamson DR, Isom K, Roach E, Stroganova L, Zelenchuk A, Miner JH, St John PL (2007) Laminin compensation in collagen alpha3(IV) knockout (Alport) glomeruli contributes to permeability defects. J Am Soc Nephrol 9:2465–2472

    Article  Google Scholar 

  14. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 11:3537–3547

    Google Scholar 

  15. Kanasaki K, Kanda Y, Palmsten K, Tanjore H, Lee SB, Lebleu VS, Gattone VH Jr, Kalluri R (2008) Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev Biol 2:584–593

    Article  Google Scholar 

  16. Baleato RM, Guthrie PL, Gubler MC, Ashman LK, Roselli S (2008) Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. Am J Pathol 4:927–937

    Article  Google Scholar 

  17. Tanaka M, Asada M, Higashi AY, Nakamura J, Oguchi A, Tomita M, Yamada S, Asada N, Takase M, Okuda T, Kawachi H, Economides AN, Robertson E, Takahashi S, Goldschmeding R, Muso E, Fukatsu A, Kita T, Yanagita M (2010) Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J Clin Invest 120:768–777

    Article  PubMed  CAS  Google Scholar 

  18. Cosgrove D, Meehan DT, Delimont D, Pozzi A, Chen X, Rodgers KD, Tempero RM, Zallocchi M, Rao VH (2008) Integrin alpha1beta1 regulates matrix metalloproteinases via P38 mitogen-activated protein kinase in mesangial cells: implications for Alport syndrome. Am J Pathol 3:761–773

    Article  Google Scholar 

  19. Sayers R, Kalluri R, Rodgers KD, Shield CF, Meehan DT, Cosgrove D (1999) Role for transforming growth factor-beta1 in alport renal disease progression. Kidney Int 5:1662–1673

    Article  Google Scholar 

  20. Andrews KL, Mudd JL, Li C, Miner J (2002) Quantitative trait loci influence renal disease progression in a mouse model of Alport syndrome. Am J Pathol 160:721–730

    Article  PubMed  CAS  Google Scholar 

  21. Kang JS, Wang X-P, Miner JH, Morello R, Sado Y, Abrahamson D, Borza D-B (2006) Loss of α3α4(IV) collagen from the glomerular basement membrane induces a strain-dependent isoforms switch to α5α6(IV) collagen associated with longer renal survival in Col4a3−/− Alport mice. J Am Soc Nephrol 17:1962–1969

    Article  PubMed  CAS  Google Scholar 

  22. Rheault MN, Kren SM, Theilen BK, Mesa HA, Crosson JT, Thomas W, Sado Y, Kashtan CE, Segal Y (2004) Mouse model for X-linked Alport syndrome. J Am Soc Nephrol 15:1466–1474

    Article  PubMed  Google Scholar 

  23. Grodecki KM, Gains MJ, Baumal R, Osmond DH, Cotter B, Valli VE, Jacobs RM (1997) Treatment of X-linked hereditary nephritis in Samoyed dogs with angiotensin converting enzyme (ACE) inhibitor. J Comp Pathol 3:209–225

    Article  Google Scholar 

  24. Gross O, Beirowski B, Koepke ML, Kuck J, Reiner M, Addicks K, Smyth N, Schulze-Lohoff E, Weber M (2003) Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int 2:438–446

    Article  Google Scholar 

  25. Proesmans W, Van Dyck M (2004) Enalapril in children with Alport syndrome. Pediatr Nephrol 3:271–275

    Article  Google Scholar 

  26. Li JG, Ding J, Wang F, Zhang HW (2009) Drugs controlling proteinuria of patients with Alport syndrome. World J Pediatr 4:308–311

    Article  Google Scholar 

  27. Koepke ML, Weber M, Schulze-Lohoff E, Beirowski B, Segerer S, Gross O (2007) Nephroprotective effect of the HMG-CoA-reductase inhibitor cerivastatin in a mouse model of progressive renal fibrosis in Alport syndrome. Nephrol Dial Transplant 4:1062–1069

    Article  Google Scholar 

  28. Chen D, Jefferson B, Harvey SJ, Zheng K, Gartley CJ, Jacobs RM, Thorner PS (2003) Cyclosporine a slows the progressive renal disease of alport syndrome (X-linked hereditary nephritis): results from a canine model. J Am Soc Nephrol 3:690–698

    Article  Google Scholar 

  29. Parpala-Spårman T, Lukkarinen O, Heikkilä P, Tryggvason K (1999) A novel surgical organ perfusion method for effective ex vivo and in vivo gene transfer into renal glomerular cells. Urol Res 2:97–102

    Article  Google Scholar 

  30. Heikkilä P, Tibell A, Morita T, Chen Y, Wu G, Sado Y, Ninomiya Y, Pettersson E, Tryggvason K (2001) Adenovirus-mediated transfer of type IV collagen alpha5 chain cDNA into swine kidney in vivo: deposition of the protein into the glomerular basement membrane. Gene Ther 11:882–890

    Article  Google Scholar 

  31. Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R (2006) Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA 19:7321–7326

    Article  Google Scholar 

  32. Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, Pusey CD, Cook HT (2006) Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells 11:2448–2455

    Article  Google Scholar 

  33. Katayama K, Kawano M, Naito I, Ishikawa H, Sado Y, Asakawa N, Murata T, Oosugi K, Kiyohara M, Ishikawa E, Ito M, Nomura S (2008) Irradiation prolongs survival of Alport mice. J Am Soc Nephrol 9:1692–1700

    Article  Google Scholar 

  34. LeBleu V, Sugimoto H, Mundel TM, Gerami-Naini B, Finan E, Miller CA, Gattone VH Jr, Lu L, Shield CF III, Folkman J, Kalluri R (2009) Stem cell therapies benefit Alport syndrome. J Am Soc Nephrol 11:2359–2370

    Article  Google Scholar 

  35. Mazzucco G, De Marchi M, Monga G (2002) Renal biopsy interpretation in Alport Syndrome. Semin Diagn Pathol 3:133–145

    Google Scholar 

  36. Kashtan CE (2007) Alport syndrome and the X chromosome: implications of a diagnosis of Alport syndrome in females. Nephrol Dial Transplant 6:1499–1505

    Article  Google Scholar 

  37. Pont-Kingdon G, Sumner K, Gedge F, Miller C, Denison J, Gregory M, Lyon E (2009) Molecular testing for adult type Alport syndrome. BMC Nephrol 10:38

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH R01 DK055000 and NIH R01 DC006442

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Cosgrove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosgrove, D. Glomerular pathology in Alport syndrome: a molecular perspective. Pediatr Nephrol 27, 885–890 (2012). https://doi.org/10.1007/s00467-011-1868-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1868-z

Keywords

Navigation