Skip to main content

Advertisement

Log in

Expression of toll-like receptor 2 and 4 in lipopolysaccharide-induced lung injury in mouse

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pattern recognition receptors, which include the toll-like receptors (TLRs), are considered to play an important role in the response against lipopolysaccharide (LPS). In this study, we performed a reverse transcriptase/polymerase chain reaction (RT-PCR) study, Western analysis, immunohistochemical staining, and RT-PCR-amplified in situ hybridization of TLR2 and TLR4 in the case of LPS-induced lung injury. The expression of TLR2 and TLR4 increased in the lung rapidly after LPS inhalation and peaked at 24 h, followed by a gradual decrease. TLR2 and TLR4 expression was observed on the bronchial epithelium and tissue macrophages. In the early hours after inhalation of fluorescein-isothiocyanate (FITC)-labeled LPS, LPS was detected mainly on the bronchial epithelium and on a few of tissue macrophages. One day after inhalation, the LPS signals disappeared in the lungs of the mice, except for a few alveolar macrophages. The expression of TLR2, TLR4, and CD14 was coincident with the signals of FITC-labeled LPS. Instillation of liposome-encapsulated dichloromethylene diphosphonate induced a significant decrease in alveolar macrophages. In the macrophage-depleted mice, however, expression of TLR2 and TLR4 mRNA or protein was slightly suppressed in the lung after LPS inhalation. These data suggest that the bronchial epithelium and macrophages play crucial roles in LPS-induced lung injury through TLR2 and TLR4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191

    Article  CAS  PubMed  Google Scholar 

  • Bachar O, Adner M, Uddman R, Cardell LO (2004) Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-kappa B signaling pathways. Eur J Immunol 34:1196–1207

    Article  CAS  PubMed  Google Scholar 

  • Berg JT, Lee ST, Thepen T, Lee CY, Tsan MF (1993) Depletion of alveolar macrophages by liposome-encapsulated dichloromethylene diphosphonate. J Appl Physiol 74:2812–2819

    CAS  PubMed  Google Scholar 

  • Brass DM, Savov JD, Whitehead GS, Maxwell AB, Schwartz DA (2004) LPS binding protein is important in the airway response to inhaled endotoxin. J Allergy Clin Immunol 114:586–592

    Article  CAS  PubMed  Google Scholar 

  • Cario E, Podolsky DK (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68:7010–7017

    Article  CAS  PubMed  Google Scholar 

  • Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing toll-like receptors. J Immunol 15:966–972

    Google Scholar 

  • Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G, Podolsky DK (2002) Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 160:165–173

    CAS  PubMed  Google Scholar 

  • Cheung DO, Halsey K, Speert DP (2000) Role of pulmonary alveolar macrophages in defense of the lung against Pseudomonas aeruginosa. Infect Immun 68:4585–4592

    Article  CAS  PubMed  Google Scholar 

  • Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  CAS  PubMed  Google Scholar 

  • Delemarre FG, Kors N, Kraal G, Rooijen N van (1990) Repopulation of macrophages in popliteal lymph nodes of mice after liposome-mediated depletion. J Leukoc Biol 47:251–257

    CAS  PubMed  Google Scholar 

  • Droemann D, Goldmann T, Branscheid D, Clark R, Dalhoff K, Zabel P, Vollmer E (2003) Toll-like receptor 2 is expressed by alveolar epithelial cells type II and macrophages in the human lung. Histochem Cell Biol 119:103–108

    CAS  PubMed  Google Scholar 

  • Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, Polentarutti N, Muzio M, Arditi M (2000) Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275:11058–11063

    Article  CAS  PubMed  Google Scholar 

  • Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, Kelly RA (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104:271–280

    CAS  PubMed  Google Scholar 

  • George CL, White ML, O’Neill ME, Thorne PS, Schwartz DA, Snyder JM (2003) Altered surfactant protein A gene expression and protein metabolism associated with repeat exposure to inhaled endotoxin. Am J Physiol Lung Cell Mol Physiol 285:1337–1344

    Google Scholar 

  • Guillot L, Medjane S, Le-Barillec K, Balloy V, Danel C, Chignard M, Si-Tahar M (2004) Response of human pulmonary epithelial cells to lipopolysaccharide involves toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J Biol Chem 279:2712–2718

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Kobayashi T, Watanabe T, Yamamoto T, Hasegawa G, Hatakeyama K, Suematsu M, Naito M (2001) Role of heme oxygenase-1 and Kupffer cells in the production of bilirubin in the rat liver. Arch Histol Cytol 64:169–178

    CAS  PubMed  Google Scholar 

  • Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165:618–622

    CAS  PubMed  Google Scholar 

  • Hornef MW, Normark BH, Vandewalle A, Normark S (2003) Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med 198:1225–1235

    Article  CAS  PubMed  Google Scholar 

  • Imaeda H, Yamamoto H, Takaki A, Fujimiya M (2002) In vivo response of neutrophils and epithelial cells to lipopolysaccharide injected into the monkey ileum. Histochem Cell Biol 118:381–388

    Article  CAS  PubMed  Google Scholar 

  • Isobe S, Chen S-T, Nakane PK, Brown WR (1977) Studies on translocation of immunoglobulins across intestinal epithelium. I. Improvements to study the peroxidase-labeled antibody method for application to study of human intestinal mucosa. Acta Histochem Cytochem 10:161–171

    CAS  Google Scholar 

  • Khair OA, Davies RJ, Devalia JL (1996) Bacterial-induced release of inflammatory mediators by bronchial epithelial cells. Eur Respir J 9:1913–1922

    Article  CAS  PubMed  Google Scholar 

  • Kiwada H, Niimura H, Fujisaki Y (1985) Application of synthetic alkyl glycosides vesicles as drug carrier. I. Preparation and physical properties. Chem Pharm Bull 33:753–759

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Hirano K, Yamamoto T, Hasegawa G, Hatakeyama K, Suematsu M, Naito M (2002) The protective role of Kupffer cells in the ischemia-reperfused rat liver. Arch Histol Cytol 65:251–261

    PubMed  Google Scholar 

  • Koyama S, Rennard SI, Leikauf GD, Robbins RA (1991) Bronchial epithelial cells release monocyte chemotactic activity in response to smoke and endotoxin. J Immunol 147:972–979

    CAS  PubMed  Google Scholar 

  • Kradin RL, Liu HW, Rooijen N van, Springer K, Zhao LH, Leary CP (1999) Pulmonary immunity to Listeria is enhanced by elimination of alveolar macrophages. Am J Respir Crit Care Med 159:1967–1974

    CAS  PubMed  Google Scholar 

  • Latz E, Visintin A, Lien E, Fitzgerald KA, Monks BG, Kurt-Jones EA, Golenbock DT, Espevik T (2002) Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277:47834–47843

    Article  CAS  PubMed  Google Scholar 

  • Leemans JC, Juffermans NP, Florquin S, Rooijen N van, Vervoordeldonk MJ, Verbon A, Deventer SJ van, Poll T van der (2001) Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J Immunol 166:4604–4611

    CAS  PubMed  Google Scholar 

  • Lentsch AB, Czermak BJ, Bless NM, Rooijen N van, Ward PA (1999) Essential role of alveolar macrophages in intrapulmonary activation of NF-kappa B. Am J Respir Cell Mol Biol 20:692–698

    CAS  PubMed  Google Scholar 

  • Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD, Espevik T, Ingalls RR, Radolf JD, Golenbock DT (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274:33419–33445

    Article  CAS  PubMed  Google Scholar 

  • Lorenz E, Jones M, Wohlford-Lenane C, Meyer N, Frees KL, Arbour NC, Schwartz DA (2001) Genes other than TLR4 are involved in the response to inhaled LPS. Am J Physiol Lung Cell Mol Physiol 281:1106–1114

    Google Scholar 

  • May MJ, Ghosh S (1998) Signal transduction through NF-kappa B. Immunol Today 19:80–88

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  • Mokuno Y, Matsuguchi T, Takano M, Nishimura H, Washizu J, Ogawa T, Takeuchi O, Akira S, Nimura Y, Yoshikai Y (2000) Expression of toll-like receptor 2 on gamma delta T cells bearing invariant V gamma 6/V delta 1 induced by Escherichia coli infection in mice. J Immunol 165:931–940

    CAS  PubMed  Google Scholar 

  • Moreland JG, Fuhrman RM, Pruessner JA, Schwartz DA (2002) CD11b and intercellular adhesion molecule-1 are involved in pulmonary neutrophil recruitment in lipopolysaccharide-induced airway disease. Am J Respir Cell Mol Biol 27:474–480

    CAS  PubMed  Google Scholar 

  • Moriyama H, Yamamoto T, Takatsuka H, Umezu H, Tokunaga K, Nagano T, Arakawa M, Naito M (1997) Expression of macrophage colony-stimulating factor and its receptor in hepatic granulomas of Kupffer-cell-depleted mice. Am J Pathol 150:2047–2060

    CAS  PubMed  Google Scholar 

  • Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004

    CAS  PubMed  Google Scholar 

  • Naito M, Umeda S, Yamamoto T, Moriyama H, Umezu H, Hasegawa G, Usuda H, Shultz LD, Takahashi K (1996a) Development, differentiation, and phenotypic heterogeneity of murine tissue macrophages. J Leukoc Biol 59:133–138

    CAS  PubMed  Google Scholar 

  • Naito M, Nagai H, Kawano S, Umezu H, Zhu H, Moriyama H, Yamamoto T, Takatsuka H, Takei Y (1996b) Liposome-encapsulated dichloromethylene diphosphonate induces macrophage apoptosis in vivo and in vitro. J Leukoc Biol 60:337–344

    CAS  PubMed  Google Scholar 

  • Naito M, Hasegawa G, Ebe Y, Yamamoto T (2004) Differentiation and function of Kupffer cells. Med Electron Microsc 37:16–28

    Article  CAS  PubMed  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz SS, Gordon S (1991) Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli. J Exp Med 174:827–836

    Article  CAS  PubMed  Google Scholar 

  • Ramprasad MP, Fischer W, Witztum JL, Sambrano GR, Quehenberger O, Steinberg D (1995) The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci USA 92:9580–9584

    CAS  PubMed  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila toll. Proc Natl Acad Sci USA 95:588–593

    Article  CAS  PubMed  Google Scholar 

  • Rooijen N van (1989) The liposome-mediated macrophage. A suicide technique. J Immunol Methods 124:1–6

    Article  PubMed  Google Scholar 

  • Rooijen N van, Sanders A (1994) Liposome mediated depletion of macrophages mechanism of action, preparation of liposomes and applications. J Immunol Methods 174:83–93

    Article  PubMed  Google Scholar 

  • Rooijen N van, Nieuwnmegen R van (1984) Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 238:355–358

    Article  PubMed  Google Scholar 

  • Rooijen N van, Kors N, Kraal G (1989) Macrophage subset repopulation in the spleen: differential kinetics after liposome-mediated elimination. J Leukoc Biol 45:97–104

    PubMed  Google Scholar 

  • Rooijen N van, Kors N, Ende M van der, Dijkstra CD (1990) Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 260:215–222

    Article  PubMed  Google Scholar 

  • Salez L, Balloy V, Rooijen N van, Lebastard M, Touqui L, McCormack FX, Chignard M (2001) Surfactant protein A suppresses lipopolysaccharide-induced IL-10 production by murine macrophages. J Immunol 166:6376–6382

    CAS  PubMed  Google Scholar 

  • Sanno N, Jin L, Qian X, Osamura RY, Scheithauer BW, Kovacs K, Lloyd RV (1997) Gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor messenger ribonucleic acids expression in nontumorous and neoplastic pituitaries. J Clin Endocrinol Metab 82:1974–1982

    Article  CAS  PubMed  Google Scholar 

  • Savov JD, Brass DM, Berman KG, McElvania E, Schwartz DA (2003) Fibrinolysis in LPS-induced chronic airway disease. Am J Physiol Lung Cell Mol Physiol 285:940–948

    Google Scholar 

  • Schwartz DA, Christ WJ, Kleeberger SR, Wohlford-Lenane CL (2001) Inhibition of LPS-induced airway hyperresponsiveness and airway inflammation by LPS antagonists. Am J Physiol Lung Cell Mol Physiol 280:771–778

    Google Scholar 

  • Serikov VB, Choi H, Schmiel K, Skaggs C, Fleming NW, Wu R, Widdicombe JH (2004) Endotoxin induces leukocyte transmigration and changes in permeability of the airway epithelium via protein-kinase C and extracellular regulated kinase activation. J Endotoxin Res 10:55–65

    Article  CAS  PubMed  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med 189:1777–1782

    Article  CAS  PubMed  Google Scholar 

  • Su GL, Klein RD, Aminlari A, Zhang HY, Steinstraesser L, Alarcon WH, Remick DG, Wang SC (2000) Kupffer cell activation by lipopolysaccharide in rats: role for lipopolysaccharide binding protein and toll-like receptor 4. Hepatology 31:932–936

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  CAS  PubMed  Google Scholar 

  • Thepen T, Rooijen N van, Kraal G (1989) Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med 170:499–509

    Article  CAS  PubMed  Google Scholar 

  • Wolfs TG, Buurman WA, Schadewijk A van, Vries B de, Daemen MA, Hiemstra PS, Veer C van’t (2002) In vivo expression of toll-like receptor 2 and 4 by renal epithelial cells IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol 168:1286–1293

    CAS  PubMed  Google Scholar 

  • Xiong H, Kawamura I, Takeaki N, Mitsuyama M (1994) Cytokine gene expression in mice at an early stage of infection with various strains of Listeria spp. differing in virulence. Infect Immun 62:3649–3654

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Naito M, Moriyama H, Umezu H, Matsuo H, Kiwada H, Arakawa M (1996) Repopulation of murine Kupffer cells after intravenous administration of liposome-encapsulated dichloromethylene diphosphonate. Am J Pathol 149:1271–1286

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Ebe Y, Hasegawa G, Kataoka M, Yamamoto S, Naito M (1999) Expression of scavenger receptor class A and CD14 in lipopolysaccharide-induced lung injury. Pathol Int 49:983–992

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of gram-positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2. J Immunol 163:1–5

    CAS  PubMed  Google Scholar 

  • Zeldin DC, Wohlford-Lenane C, Chulada P, Bradbury JA, Scarborough PE, Roggli V, Langenbach R, Schwartz DA (2001) Airway inflammation and responsiveness in prostaglandin H synthase-deficient mice exposed to bacterial lipopolysaccharide. Am J Respir Cell Mol Biol 25:457–465

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Susumu Momozaki and Takashi Aoyama for their excellent technical assistance. We are grateful to Kissei Pharmaceuticals for supplying dichloromethylene diphosphonate, and Nippon Fine Chemicals for providing phosphatidylcholine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Naito.

Additional information

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan and the Tsukada Grant for Niigata University Medical Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, T., Yamamoto, T., Kazawa, T. et al. Expression of toll-like receptor 2 and 4 in lipopolysaccharide-induced lung injury in mouse. Cell Tissue Res 321, 75–88 (2005). https://doi.org/10.1007/s00441-005-1113-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-1113-9

Keywords

Navigation